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Objective: To introduce a new ophthalmic optical co-
herence tomography technology that allows unprec-
edented simultaneous ultra-high speed and ultra-high
resolution.

Methods: Using a superluminescent diode source, a clini-
cally viable ultra-high speed, ultra-high resolution spec-
tral domain optical coherence tomography system was
developed.

Results: In vivo images of the retina, the optic nerve head,
and retinal blood flow were obtained at an ultra-high speed
of 34.1 microseconds (ms) per A-scan, which is 73 times
faster than commercially available optical coherence to-
mography instruments. Single images (B-scans) consist-
ing of 1000 A-scans were acquired in 34.1 ms, allowing
video rate imaging at 29 frames per second with an axial

resolution of 6 µm. Using a different source in a slightly
slower configuration, single images consisting of 500 A-
scans were acquired in 34 ms, allowing imaging at 29
frames per second at an axial resolution of 3.5 µm, which
is 3 times better than commercially available optical co-
herence tomography instruments. The amount of en-
ergy directed into the eye in both cases, 600 µW, is less
than that of the Stratus OCT3 and is safe for intrabeam
viewing for up to 8 hours at the same retinal location.

Conclusion: Spectral domain optical coherence tomog-
raphy technology enables ophthalmic imaging with un-
precedented simultaneous ultra-high speed and ultra-
high resolution.
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O PTICAL COHERENCE TO-
mography (OCT) al-
lows noninvasive imag-
ing of ocular structures.
Optical coherence tomo-

graphic imaging is analogous to B-mode
ultrasound imaging, except that it uses
light instead of sound.1 The interface be-
tween different ocular tissues can be
determined by changes in reflective prop-
erties between the tissues. Current experi-
mental ophthalmic OCT instruments pro-
vide more structural information than any
other ophthalmic diagnostic technique.2

With the latest commercially available ma-
chine (Stratus OCT3; Carl Zeiss Meditec
Inc, Dublin, Calif), axial resolutions of bet-
ter than 10 µm can be achieved, and cross-
sectional retinal images consisting of 512
A-scans can be acquired in 1.28 seconds.
Nearly all commercial and research OCT
systems developed to date are based on
time domain OCT technology (TDOCT).
In TDOCT, an individual A-scan is ac-
quired by varying the length of the refer-
ence arm in an interferometer, such that
the scanned length of the reference arm
corresponds to the A-scan length. The
main impediment to more widespread
clinical use of TDOCT technology is the
limited resolution and slow acquisition

time. Simultaneous increases in imaging
speed and resolution, without sacrificing
image quality, can only be brought about
by a fundamentally different approach.

An alternative technology is spectral do-
main OCT (SDOCT), also known as Fou-
rier domain OCT. In SDOCT, no mechani-
cal scanning of the reference arm is needed.
Instead, a spectrum is measured with a spec-
trometer in the detection arm of the inter-
ferometer and converted to depth informa-
tion by Fourier transformation.3-5 The
detection method using a spectrometer is
much more efficient and as a result SDOCT
is several orders of magnitude more sensi-
tive than TDOCT.6-8 The higher sensitiv-
ity of SDOCT technology allows for detec-
tion of weaker signals and for faster data
acquisition. A sensitivity improvement of
21.7 dB (150-fold) compared with an
equivalent TDOCT system was recently
shown.9 This has allowed a considerable in-
crease in imaging speed and resolution
without compromising image quality10 and
has recently led to in vivo video OCT reti-
nal imaging at 29 frames per second with
an axial resolution of 6 µm or 3.5 µm, de-
pending on the light source.9,11,12

Similar to Doppler ultrasound, spec-
tral domain optical Doppler tomography
(SDODT) can measure retinal blood flow.

Author Affiliations:
Department of Ophthalmology,
Harvard Medical School,
Boston, Mass (Dr Chen);
Harvard Medical School and
Wellman Center for
Photomedicine, Massachusetts
General Hospital, Boston
(Drs Cense, Pierce, Park, Yun,
Bouma, Tearney, de Boer, and
Messers Nassif and White).

(REPRINTED) ARCH OPHTHALMOL / VOL 123, DEC 2005 WWW.ARCHOPHTHALMOL.COM
1715

©2005 American Medical Association. All rights reserved.
 on December 13, 2005 www.archophthalmol.comDownloaded from 

http://www.archophthalmol.com


Here we will show several images from the new ultra-
high speed, ultra-high resolution superluminescent diode–
based SDOCT and SDODT systems. The potential clini-
cal implications of this improved technology will be
discussed.

METHODS

PATIENT

The right eye of a 39-year-old Caucasian man was imaged in
vivo, using our SDOCT system. The right eye was normal ex-
cept for being plano−1.00�105°. Best corrected vision was 20/
20. Massachusetts Eye and Ear Infirmary and Massachusetts
General Hospital institutional review board approval was ob-
tained.

SPECTRAL DOMAIN OPTICAL
COHERENCE TOMOGRAPHY

A-scans were acquired at a rate of 29 000 per second (6 µm axial
resolution) and 14 500 per second (3.5 µm axial resolution).
In Figure 1, the experimental setup is shown.9-12 The light
sources were a commercially available superluminescent di-
ode (SLD) (Superlum Diodes Ltd, Moscow, Russia) with a po-
larized power of 4.6 mW and a full width at half maximum spec-
tral width of 50 nm centered at 840 nm (6 µm resolution) and
an experimental source (BroadLighter; Superlum) with a power
of 3.7 mW and a full width at half maximum spectral width in
the system of 150 nm centered at 875 nm (3.5 µm resolution).
The power incident on the eye was limited to 600 µW, in ac-
cordance with the American National Standards Institute maxi-
mum permissible exposure for continuous intrabeam view-
ing.13 Light returning from sample and reference arm paths was
recombined in the detection arm and sent to a high-speed, high-
efficiency spectrometer.9,10

For SDODT, the measured phase stability of our system is
more than 25 times better than previously quantified figures

for TDODT systems, and our acquisition speed corresponds to
a minimum detectable Doppler shift of±25 Hz and a dynamic
range of 600, defined as the ratio of maximum to minimum de-
tectable Doppler shift.11 Images were acquired at 29 frames per
second (1000 A-lines per frame) and subsequently processed.

The pupil was not dilated for acquisition of any of the im-
ages. Because the eyes were not dilated, we did not acquire charge
coupled device images of the retina.

RESULTS

Figure 2A shows a horizontal linear scan through the
neuroretinal rim and peripapillary retina. Figure 2B shows
another linear scan through the center of the optic nerve
head. Figure 2A and B were obtained in one twenty-
ninth of a second and each consists of 1000 A-scans with
an axial resolution of 6 µm. Figure 3A shows a hori-
zontal linear scan through the fovea and was acquired
in one twenty-ninth of a second and consists of 500 A-
scans with an axial resolution of 3.5 µm. For compari-
son, Figure 3B shows a scan of the same area with a source
providing 6 µm resolution, showing the improved sharp-
ness of the OCT images at 3.5 µm resolution.

Spectral domain optical Doppler tomography shows
a horizontal linear scan through an area inferior to the
optic nerve head (Figure 4). Blood vessels produce a
shadowing effect in underlying regions in the intensity
image (Figure 4A). In the corresponding phase image
(Figure 4B), stationary regions are gray, with positive and
negative Doppler shifts mapped in black or white, en-
abling the bidirectional nature of blood flow to be visu-
alized. Figure 4 was acquired in one twenty-ninth of a
second with a resolution of 6 µm. Although not shown
in Figure 4, pulsatile blood flow can clearly be visual-
ized in real-time in arterioles and venules as small as 10
µm in diameter.11
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Figure 1. Schematic of the spectral domain optical coherence tomography setup that was used for in vivo measurements. ASL indicates air-spaced lens;
C, collimator; CCD, charge-coupled device; E, Eye; HP-SLD, high-power superluminescent diode; LSC, line scan camera; ND, neutral density filter; PC, polarization
controllers; RSOD, delay line; SL, slitlamp; TG, transmission grating.
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The ultra-high speed imaging capabilities of SD-OCT
allow 3-dimensional reconstruction of the optic nerve and
peripapillary retina, as shown in Figure 5, with this vol-
ume assembled from 400 images with an axial resolution
of 6 µm, acquired in a total time of 14 seconds.

COMMENT

Compared with traditional TDOCT, SDOCT technol-
ogy yields unprecedented acquisition speeds and signifi-
cantly higher axial resolutions using a potentially afford-
able SLD source. This system produced high quality
images while operating at safe ocular exposure levels, even
below that of the commercially available OCT3 system.

Ultra-high resolution TDOCT systems with axial reso-
lutions of less than 3 µm have been developed using a
titanium-sapphire laser.2,14 Although these ultra-broad
bandwidths enable axial resolutions better than stan-
dard SLD,14 the principal disadvantage of the current fem-
tosecond titanium-sapphire laser technology is still its
high cost and complexity, which currently precludes its
widespread clinical use.2 A more fundamental limita-
tion of this current ultra-high resolution TDOCT tech-
nology is its slow acquisition speed, which is a conse-
quence of the inverse relation between resolution and
speed. Although the prototype system had clinically im-
practical acquisition times of 4 to 12 seconds at an axial
scan rate of 50 Hz for a 200 to 600 transverse pixel im-
age, the current system runs at 250 Hz.2 In SDOCT, there
is no fundamental limiting relation between resolution
and speed, and any source can be used without compro-
mising image quality.8,10 Superluminescent diodes have
been used for commercial OCT imaging systems and the
advancement in SLD technology has made available a new

generation of ultra-broad bandwidth light sources that
are compact, relatively inexpensive, and require low main-
tenance. The combination of these new light sources with
SDOCT technology has led to in vivo retinal imaging with
simultaneous ultra-high axial resolutions and ultra-
high speeds.

Spectral domain technology not only offers struc-
tural retinal imaging but also allows imaging of retinal
blood flow similar to Doppler ultrasound.15 The flow sen-
sitivity of Doppler OCT greatly depends on the mechani-
cal or phase stability of the OCT system and on how fast
images can be taken.16,17 Because of the dramatic speed
improvement of SDOCT and the absence of moving parts
in the reference arm, the phase stability is greatly im-
proved. Spectral domain optical Doppler tomography al-
lows real-time imaging of pulsatile blood flow within blood
vessels as small as 10 µm and as deep as the choroid.11,18

Spectral domain optical coherence tomography’s higher
acquisition speeds realistically allow for a shift from 2-di-
mensional to 3-dimensional (3-D) images of ocular
anatomy (Figure 5). For example, a 6.2�6.2 mm area
with 62 parallel images 100 µm apart can be obtained in
2.1 seconds. Scan areas can be adjusted and scan inter-
vals can be decreased as needed. In glaucoma, instead of
only peripapillary circular scans or linear scans, SDOCT
scans would allow 3-D mapping of the nerve fiber layer
of the entire posterior pole. In diabetic retinopathy,19 3-D
SDOCT maps of structure and blood flow would show
the exact location of clinically significant macular edema
and would allow more accurate quantification of macu-
lar thickness. In macular degeneration, 3-D maps can de-
lineate the exact extent and depth of choroidal neovas-
cular membranes and may minimize the need for repeat
invasive fluoroscein angiography. Large choroidal le-
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Figure 2. Spectral domain optical coherence tomographic image of the optic nerve and peripapillary region acquired in one twenty-ninth of a second consisting of
1000 A-scans. The image measures 6.1�1.5 mm. A, Horizontal linear scan through the neuroretinal rim and peripapillary retina. B, Linear scan through the center
of the optic nerve head. IPRL indicates border between the inner and outer segments of the photoreceptors; RNFL, retinal nerve fiber layer; RPE, retinal pigment
epithelium. The choroid and choriocapillaris are shown below. Vertical arrows point toward 4 large blood vessels (BV).
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sions can be mapped, since scans up to 10 mm in width
can be obtained quickly with ultra-high resolution. This
may allow for better monitoring of posterior intraocular
tumors since it affords higher resolution than B-scan ul-
trasound.20-22 Because of SDODT’s ability to create 3-D
maps of the retina and to map areas of active blood flow
more accurately, this new technology may decrease the
need for invasive fluoroscein angiography or enable ear-
lier diagnosis of diseases with localized poor blood flow
(eg, vasculitis, impending branch retinal vein occlu-
sion, etc).

Spectral domain optical coherence tomography may
aid in the management of glaucoma, the second leading
cause of blindness in the world.23,24 Nerve fiber layer (NFL)
assessment is important in glaucoma because it is di-
rectly correlated with loss of ganglion cells, which is as-

sumed to be a primary event in glaucomatous damage.25

Since the peripapillary NFL can be on the order of 50 to
over 200 µm thick, current resolutions of 10 to 15 µm
may not be enough to detect a significant change over
time. Therefore, accurate ultra-high resolution SDOCT
measurements of NFL thinning may allow for earlier de-
tection and treatment of glaucoma. It has been sug-
gested that NFL thinning may occur as early as 6 years
prior to permanent vision loss and may occur prior to
clinically detectable optic nerve head changes.26 Spec-
tral domain optical coherence tomography also pro-
vides a direct assessment of NFL thickness, unlike scan-
ning laser polarimetry (eg, GDx; Laser Diagnostic
Technologies, San Diego, Calif), which indirectly calcu-
lates NFL thickness through depth-resolved double-
pass phase retardation measurements.27
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Figure 3. Layers are labeled as follows: RNFL, retinal nerve fiber layer; GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer
plexiform layer; ONL, outer nuclear layer; ELM, external limiting membrane; IPRL, interface between the inner and outer segments of the photoreceptor layer; RPE,
retinal pigment epithelium; C, choriocapillaris and choroid. The blood vessels are circled with darker circles. Structures in the outer plexiform layer are circled with
lighter circles. A highly reflective spot in the center of the fovea is marked with an R. A, Ultra-high resolution spectral domain optical coherence tomographic
(SDOCT) image of the foveal region acquired in one twenty-ninth of a second consisting of 500 A-scans at a resolution of 3.5 µm. The image measures 3.1�0.61
mm. The image is expanded in the vertical direction by a factor of 2 to provide more detail. Two layers at the location of the RPE at the left and right are marked
with arrows and an asterisk. B, Similar image taken with a standard SDOCT system employed with a superluminescent diode. The axial resolution of the image
was 6 µm and the image measures 3.2�0.8 mm. The individual layers are less distinct, and structures in the outer plexiform layer are not seen. The differing
scattering properties of the RPE are not clearly seen, as in the higher-resolution image.
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Mapping the true optic nerve head topography is pos-
sible with SDOCT (Figure 2 and Figure 5). Previous OCT
technologies have not allowed for accurate maps of op-
tic nerve head topography. Even with the ultra-high reso-
lution titanium-sapphire lasers, slower acquisition speeds
necessitate realignment of A-scans, which do not allow
for evaluation of the true optic nerve head topogra-
phy.14 With the ultra-high speeds of SDOCT, realign-
ment of A-scans within a single image becomes unnec-
essary. Spectral domain optical coherence tomographic
maps of optic nerve head topography may provide a bet-
ter, more objective way to document and monitor pro-
gressive glaucomatous changes in the optic nerve head
compared with standard disc photography. Spectral do-
main optical coherence tomography technology is also
potentially better than confocal scanning laser ophthal-
moscopy techniques (eg, Heidelberg Retina Tomograph
II; Heidelberg Engineering, Dossenheim, Germany) in that
it is not limited to measuring only surface topography
but it also enables higher resolution imaging.

Motion artifacts within a single image become almost
negligible with the ultra-high speed nature of SDOCT. Since
patient motion artifacts are more of a problem as people
become older, the ultra-high speed nature of SDOCT is par-
ticularly helpful since some of the most common causes
of blindness increase in prevalence as people age (ie, glau-

coma, age-related macular degeneration, and diabetic reti-
nopathy).28,29 The ultra-high speed nature of SDOCT also
minimizes imagedistortioncausedby involuntaryeyemove-
ments, although motion artifacts are still present in 3-D vol-
ume sets acquired over a few seconds.

Structures not previously visible with conventional
TDOCT may be more easily visualized with SDOCT
(Figure 2 and Figure 3). Recent studies have also shown
that there is a statistically significant difference in the cen-
tral 5.9 to 6.0 mm macular volume between normal and
glaucomatous eyes.30-32 Therefore, SDOCT may better en-
able detection of changes in the macular retinal gan-
glion cell layer, which is only 4 to 6 cells thick.33,34

In eye diseases where OCT technology has already been
shown to be useful,35-59 further improvements in SDOCT
technology may improve the diagnosis and treatment of
these many eye diseases, decrease the need for other in-
vasive ophthalmic tests, and enhance understanding of
eye disease pathophysiology.
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