and aberration correction [26,27]. This anticipated improvement will allow the larger tissue volume (>3 mm³) to be imaged at a single needle insertion site.

The optical probe may be used in optogenetic studies [28] for simultaneous modulation and monitoring of deep brain functions. Furthermore, this technique may be applicable to other organs, permitting the real-time examination of pathologies at the cellular level in deep tissue in quick procedures.

Acknowledgments

This work was supported by grants from National Institutes of Health (U54CA143837) and National Research Foundation of Korea (R31-2008-000-10071-0,NRF-2011-357-C00141).