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Non-destructive mapping of stress and strain in
soft thin films through sound waves
Guo-Yang Li 1, Artur L. Gower2, Michel Destrade 3,4✉ & Seok-Hyun Yun 1✉

Measuring the in-plane mechanical stress in a taut membrane is challenging, especially if its

material parameters are unknown or altered by the stress. Yet being able to measure the

stress is of fundamental interest to basic research and practical applications that use soft

membranes, from engineering to tissues. Here, we present a robust non-destructive tech-

nique to measure directly in-situ stress and strain in soft thin films without the need to

calibrate material parameters. Our method relies on measuring the speed of elastic waves

propagating in the film. Using optical coherence tomography, we verify our method experi-

mentally for a stretched rubber membrane, a piece of cling film (about 10 μm thick), and the

leather skin of a traditional Irish frame drum. We find that our stress predictions are highly

accurate and anticipate that our technique could be useful in applications ranging from soft

matter devices to biomaterial engineering and medical diagnosis.
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Soft thin films hanging in the air or confined in fluids are
found ubiquitously in our daily lives as well as in natural
and engineering systems. Examples include cling film

packaging food, the eardrum and the diaphragm in our body, and
various elastic sheets, membranes, vesicles and bands holding
structures together. They are typically under external and/or
internal stress, and it is often desirable to know the stress level to
understand the environment they are exposed to or interacting
with, or to monitor the health of, and changes in, the materials. In
general it is challenging to measure non-invasively the stress field in
such materials in situ. This is even more difficult if the mechanical
properties of the material are unknown and, furthermore, if the
original configuration of the material is unknown, which precludes
straightforward measurement of strain1,2.

Various techniques have been devised to measure in-plane
stresses3. The choice of technique depends on the material type
(solid/liquid/type of molecules) and also on the length scale.
Essentially all techniques so far rely on the knowledge of the
elastic moduli of the material or some specific expected behaviour
of the material, which limits application to known or specific
materials and structures. For example, in the Langmuir–Blodgett
trough4, a workhorse of membrane biophysics, surface tension is
estimated by measuring the amount of force required to insert a
Wilhelmy plate into a given membrane. Yet, this force depends
on the nature of the surface tension and its accuracy has been
questioned for solid-like membranes5. Conventional ultrasound
methods also require the knowledge of the elastic moduli and
acousto-elastic parameters of the materials6.

In this paper, we describe a technique that allows the stress
field to be determined in soft thin films even without a priori
knowledge of the material properties or applied strain. The
technique uses elastic waves propagating in the film7,8 followed
by a simple algorithm to determine the stress from their mea-
sured wave speeds. Wave speeds change with stress, just like the
sound of a guitar changes when strings are tightened. From the
measured wave speeds at several frequencies we show how to
recover the in-plane stress and strain in stretched rubber mem-
brane, cling film, and animal skin directly, without knowing nor
needing any physical parameters other than mass density and
current thickness. For ultra-thin sheets such as cling film, the
current thickness is hard to measure accurately, but we show that
it is not needed for the estimation of the stress. Here, we use
optical coherence tomography (OCT) to visualise the elastic
waves and measure their speeds in an audible frequency range.
This range (1–20 kHz) is well suited for soft materials with
thickness ranging from sub-micron to a few hundreds of
micrometers.

Results
Figure 1 summarises the main findings. Fig. 1c–e show the
wavefronts generated by a vibrating spherical probe hitting a thin
rubber membrane (Fig. 1a, b) with frequency f= 6 kHz, as
recorded by OCT imaging in the unstressed (N= 0) and fully
stressed states (N= 6 weights of 20 g each added to pull on the
sheet, creating a stress of σ1= 200 kPa, see Methods). While in
the unstressed state the wave propagates at the same speed in all
directions (circular wavefronts), the application of stress clearly
induces anisotropy for the wave speed (elliptical wavefronts with
the major axis aligned with x1, i.e., the direction of the uniaxial
tension), leading to a significant increase of the speed along the
uniaxial tension, and a decrease along the perpendicular direction
(see Supplementary Note 8). This observation is confirmed when
solving the dispersion relation (see Methods) of the A0 funda-
mental antisymmetric propagation mode for different levels of
stress (N= 0,…6) as shown in Fig. 1f. From our experimentally

measured phase wave speeds we then deduce by linear least
squares regressions the values of α and γ, the two quantities
required to determine stress and strain (see Methods and Sup-
plementary Note 7).

Figure 1g shows the resulting Cauchy stress (i.e., σ1= α− γ)
and how it compares with that actually applied to the film, with
errors around 5%. Similarly, we measure σ2 using the wave speeds
along x2, also shown in Fig. 1g. As the uniaxial tension is applied
along x1 only, σ2 is expected to be close to zero, which is what the
experiments confirm.

According to our analysis (Eq. 2 in Methods), the extension
stretch is λ1= (α/γ)1/3 in uni-axial deformation. Figure 1h shows
the identified stretch ratio (i.e., (α/γ)1/3, as computed from the
speed measurements) and the comparison with the experimental
λ1. Wemeasured the latter directly by tracking the deformation of a
grid drawn on the membrane, and we also computed it from the
thickness variation as λ1 ¼ ðh0=hÞ2. Again an excellent agreement
is achieved, with a maximum error of ~3%. Similarly, we applied
the method along the x2 axis to obtain λ2; in the uni-axial tension of
an incompressible, initially isotropic solid, it is expected to behave
as λ�1=2

1 , as we indeed verified.
Finally, Fig. 1i shows the agreement between the stress found

from the speed measurements as a function of the identified
stretch with the data obtained by an independent (destructive)
tensile test and thus validates further the proposed method.

Next we measured the stress in stretched plastic wrap, a.k.a.
cling film (Fig. 2a) made of polyethylene. The typical thickness of
cling film ranges from 8 to 13 μm, which is beyond the cap-
abilities of accurate axial resolution in OCT. Nonetheless, we can
still generate and study Lamb wave propagation in the stretched
cling film with the OCT system. Here, we were able to evaluate
the stress in the cling film (but not the strain): we proved (see
Methods) that σ1= α− γ= ρv2 for ultra-thin stretched films,
almost independently of frequency. Figure 2b shows the data of
wave dispersion for the unstressed and fully stressed states,
obtained with a similar set-up. In Fig. 2c, we report the stress
identified by this method, which shows very good agreement with
the values of the stress actually applied (maximum error ~ 11%).

Finally we applied our technique to measure the stress in the
drumhead of a musical instrument called the bodhrán drum, a
traditional Irish drum made with goat skin. The thickness of the
skin was measured to be 360 ± 30 μm. We performed in situ
measurements on the drumhead (Fig. 3a) at normal (dry) and
hydrated conditions of the skin. In the dry condition, the fun-
damental resonance frequency of the instrument was ~84 Hz, and
it was decreased to ~36 Hz after hydration (see Supplementary
Note 10). The goat skin is intrinsically anisotropic, but our
experiments revealed almost circular wave profiles (Supplemen-
tary Movies 3 and 4). This is well explained by the large radial
stress in the drum, which stretches collagen fibres along the stress
field9. The applied strain is transversely isotropic (equi-biaxial in
the radial/circumferential directions) and thus, for all intends and
purposes, acoustic wave propagation is isotropic in the drum
plane. Figure 3b shows the dispersion relations of the skin in the
dry and damp states, obtained at a region in the drum head. We
determined from the experimental data that the amount of radial
stretch in the dry skin is 0.28% and that humidification relaxed it
to 0.20% (Fig. 3c). The corresponding stress is changed from
3.79 MPa (dry) to 1.31 MPa (damp). Noting that the strain is
small, with the stress and strain we can derive the Young modulus
of the skin to be ~680MPa for dry skin and ~330MPa for the
damp skin, which shows that humidification not only decreases
significantly the stretch but also the stiffness of the skin.

The result reveals how much the humidification changed the
stiffness and the tension of the skin. Hydration alters the
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resonance frequency (pitch) of the instrument, which is propor-
tional to

ffiffiffiffiffiffiffiffiffiffi
σ1=ρ

p
. The 65% reduction in tension predicts about

46% decrease in resonance frequency. This is comparable to the
measured 57% decrease for the resonance frequency (from 84 Hz
to 36 Hz). The discrepancy is mostly likely due to a change in the
mass density as well as to the spatially nonuniform hydration
applied across the large drumhead (41 cm diameter).

Discussion
We proposed a method to evaluate directly the in-plane stress
and strain present in a taut film or membrane. The method is
nearly model-free, in the sense that it is independent of, and does
not require, the material’s elastic constants. The method only
required the mass density and film thickness.

We validated our method experimentally and found a high
level of accuracy for the measured stress and strain in a thin
rubber film (0.5 mm thickness). We went on to apply the same

method to an ultra-thin membrane of stretched cling film (12 μm
thickness). In that case we were able to determine the stress
accurately, even though theoretically, our method was designed
for incompressible materials. Cling film is compressible, with
initial Poisson’s ratio ν≃ 0.32 and also exhibits significant plas-
ticity. In Supplementary Note 3, we show that extending the
method to accommodate compressibility only adds a small error
in the low frequency regime, which helps explain the success of
the method here. We also managed to estimate the in situ,
unknown, amounts of stress and stretch in the skin of a bodhrán,
and found that humidifying it decreased the stretch by almost
30% and the stress by 65%. In that analysis we did not consider
whether the mass density was changed by humidification, so that
our results are approximate.

Our method applies primarily to elastic materials, and also to
weakly viscoelastic materials because there is evidence that visc-
osity does not affect the wave speeds significantly, only their
amplitude, provided the attenuation length is much larger than
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the wavelength10. Furthermore, for thin plates, only low fre-
quency waves are needed to estimate the stress, in which case
viscosity has a very small effect on the wave speed. However,
larger frequencies, or highly viscous materials, call for more
involved modelling with parameters including viscosity11,12.

Many real-life materials such as composites or biomaterials
possess intrinsic anisotropy. Accounting for preferred directions
complicates the equations of acousto-elasticity greatly, and leads
to a breakdown of the proposed method, except maybe in special
cases, such as for example for waves propagating along fibers
when they are aligned with the principal directions of pre-stretch,
see the recent advances in that direction13,14.

It is relatively straightforward to extend our method to thin
structures in contact with fluids or (isotropic) gel-like matters,
either on one or both sides, such as the dura mater enveloping the
brain (after craniotomy)15 and the cornea16 as well as blood
vessel walls17. Our work is expected to pave the way to practical
applications.

Methods
Theory. Consider a stretched film with the coordinate axes (x1, x2, x3) aligned with
its edges, where− h ≤ x3 ≤ h, so that the film has thickness 2h, see Fig. 4a. To
determine the stress, we consider the speed of elastic waves travelling along the x1
direction of a free film, with no displacement in the x2 direction, and polarised in
the (x1, x3) plane. These are the so-called Lamb waves.

The dispersion relation, relating the wave speed v to the wavenumber k, for the
anti-symmetric (flexural, exponent+ 1) and symmetric (extensional,
exponent− 1) modes is18

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α� ρv2

γ
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0
@
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¼ 1þ α� ρv2

γ

� �2

; ð1Þ

where α and γ are instantaneous elastic moduli. Determining them gives direct

access to the state of in-plane stress and strain, because

α� γ ¼ σ1; α=γ ¼ λ31; ð2Þ
see Supplementary Note 1 for details.

This dispersion equation assumes the membrane is incompressible, isotropic
when there is no stress, and is subjected to moderate strains. These assumptions are
an excellent approximation for most rubber-like materials and lead to the third-
order incompressible elastic strain energy19, which depend on only two material
constants: the initial shear modulus μ (μ= E/3, where E is the Young modulus),
and the third-order Landau constant A (also known as n in the expansion of
Murnaghan20,21).

The dispersion relation Eq. 1 yields multiple solutions for the speed v at a given
frequency (or wavenumber k). The waves with the smallest speeds, called the
fundamental modes A0 and S0, are the easiest to measure. The principle of our
method is to extract the moduli α and γ from the A0 and S0 modes, as we detail
below, and determine the stress and stretch using Eq. 2. Figure 4b shows how these
modes are sensitive to stress from a uni-axial extension of 5% (full lines) to 10%
(dashed lines), for a specific choice of (ρ, μ, A).

For a very thin film, or small k, we can take kh→ 0 in Eq. 1 to obtain
ρv2= α− γ or α+ 3γ for the A0 or S0 modes, respectively. On the other hand, for a
very thick film, or large k, we can take kh→∞ to obtain ρv2 ¼ α� η20γ where
η0= 0.2956 is the real root of the cubic x3+ x2+ 3x− 1= 0 (Rayleigh surface
wave limit). In principle, if two of these three limiting wave speeds can be
measured, then α and γ, and thus the stress and stretch can be determined through
Eq. 2. In fact, the first limit gives the stress directly according to Eq. 2 (later we
show how this remark leads to an accurate stress measurement in an ultra-thin film
such as cling film.).

In practice, it might prove difficult to attain reliable values for these limits in
general, especially the third one (as a thin film is the opposite of a half-space, where
a Rayleigh wave propagates). It is also impractical to use templates such as Fig. 4a
for other values of the speeds, because the graphs are very sensitive22 to the
{μ, A, λ1} values (hence two very different sets could yield very close plots).

Instead, we rely on a master graph, independent of the material and physical
parameters ρ, μ, A, σ1, λ1. For the A0 mode we define ηA0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα� ρv2Þ=γ

p
, and the

corresponding dispersion equation is

4 ηA0 tanh ηA0kh coth kh ¼ 1þ η2A0
� �2

: ð3Þ
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For the S0 mode, we define ηS0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρv2 � αÞ=γ

p
and get

4ηS0 cot ηS0kh tanh kh ¼ 1� η2S0
� �2

; ð4Þ

see Fig. 4c for the resulting η− kh master curves (and Supplementary Note 1).
Then we obtain α and γ from these master curves by placing two points on the
curves from speed/frequency measurements, which leads to a system of two
equations. In practice, we may increase the accuracy by making more than two
measurements and optimising for α, γ by linear least squares regression
(Supplementary Note 7).

For ultra-thin films such as cling film (less than 13 μm thick), the OCT system is
not able to measure the thickness accurately, but it can image waves and measure
their speed. Take for example the 2 kHz measurement for the stressed cling film,
see Fig. 2b: there, v≃ 32 m.s−1 and 2h < 13 μm, which means that kh < 2.73 × 10−3.
Thus, solving Eq. 3 we find that 0:99995<η2A0<1:0, so that for all intents and
purposes, η2A0 ¼ ðα� ρv2Þ=γ ¼ 1. It follows that at that frequency, the stress
σ1= α− γ is found directly as σ1= ρv2.

Experimental setup. We devised the experimental setup shown in Fig. 5a and
Supplementary Fig. 10, based on a home-built, swept-source optical coherence
tomography (OCT) system16. This system has an A-line rate of 43.2 kHz, axial
resolution of ~15 μm and transverse resolution of ~30 μm, using a polygon swept

laser with a tuning range of 80 nm and a center wavelength of 1280 nm. The optical
beam is scanned using a two-axis galvanometer scanner. To excite Lamb waves in
the film we used a probe driven by a vibrating piezoelectric transducer (Thorlabs,
PA4CEW). The plastic probe was 3D-printed and has a spherical tip with a 2 mm
diameter. A small force (~20 mN) was applied to the probe to keep it in contact
with the sample. The optical beam scan was synchronised with the probe vibration
to operate in an motion-brightness (M-B) scan mode, to capture the wave pro-
pagating along the direction of tension (x1), and then along x2. The frequency of
the vibration was step-tuned from 2 to 20 kHz with an interval of 2 kHz. At each
frequency, we acquired the amplitudes and phases of the vibrations at 96 transverse
locations (see Supplementary Note 4 for details of the M-B scan). To demonstrate
the stress-induced anisotropy visually, we also scanned the laser beam along the
out-of-plane direction (x3) to obtain a top view of the wave propagation within the
film, see Fig. 1c, d. The vertical displacement near the probe contact point at the
sample was in the order of 100 nm in the frequency range. To measure this small
vibration, we used the phase change in the interference signal of the OCT16, see
Fig. 1e.

Figure 5b, d shows the real and imaginary parts of the vertical displacements
obtained at 4 kHz and 12 kHz, respectively, when two weights are used to load the
rubber membrane. The curve above each map shows the displacement extracted
from the upper surface of the membrane.

To measure the wavenumber k, and thus the wave speed v= 2πf/k for a given
frequency, the surface displacement was Fourier-transformed from the spatial
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domain to the wavenumber domain, as shown in Fig. 5c, e. The standard deviation
error in the wavenumber measurement is estimated to be about 0.1% (see
Supplementary Note 5). At 4 kHz, the A0 mode is predominantly excited so that
only one peak can be identified in the wavenumber domain. At 12 kHz, another
peak that corresponds to the S0 mode emerges at a lower wavenumber besides the
A0 mode (see also Supplementary Note 6). The wavenumbers of the A0 mode
obtained from Fig. 5c, e are 2.43, 5.46rad.mm−1, respectively. Taking the film
thickness and the wavenumbers together, we get 2kh ≃ 1.14 at 4 kHz and 2kh ≃2.56
at 12 kHz, showing that these measurements are taken in the low frequency regime.
Our sensitivity analysis (see Supplementary Note 2) suggests that measurements in
the low frequency regime give a better detection sensitivity for the mechanical
stress. We used the data of A0 for the subsequent analysis since it is the dominant
mode in the frequency range studied here.

For the experiments on the rubber sheet and cling film, the sample was clamped
along its two short edges and one clamp was pulled horizontally by a cord
connected to N= 1 to 6 weights (m= 20 g each) to apply a uniaxial tension σ1 with
increasing magnitude, as shown in Fig. 5a. It was measured as σ1= λ1Nmg/
(2W0h0), where g= 9.8m.s−2 is the acceleration of gravity. We took the average of
results obtained from the loading and unloading protocols to minimise the effect of
hysteresis.

Each time a new weight (N= 0, 1, . . . , 6) was added, the current film thickness
2h was measured by the OCT image, from which the stretch ratio λ1 ¼ λ�2

3 ¼
ðh0=hÞ2 was evaluated (assuming a uniaxial deformation took place), see
Supplementary Fig. 12. The measured stretch ratio agreed well with that obtained
by the deformation of the grids drew on the surface of the rubber film. The stretch
ratio of the film reached λ1≃ 1.37 (37% extension) when N= 6.

Materials. The rubber sheet had mass density ρ≃ 1, 070kg.m−3 and refractive
index n≃ 1.4. The initial dimensions were 2h0≃ 0.5 mm, W0= 16 mm,
L0= 40 mm, large enough to avoid wave reflections at the edges (see Fig. S4 for
photos of the sample and the experimental setup). The membrane was prepared
from the Ecoflex 00–50 material (Smooth-On Inc), by mixing the Ecoflex rubbers
1A and 1B to 1:1 ratio by weight. The mixture was poured into a mould and cured
at room temperature overnight. Then the sample was post-cured in an oven at
80 ∘C for 2 h. To characterise its mechanical properties, we cut a small piece
(0.5 × 5 × 18 mm3) from the sample and performed a tensile test with a uniaxial
tensile testing machine (eXpert 4000 Micro Tester, Admet, Norwood, USA). By
curve fitting we found that the initial shear modulus was μ ≃ 180 kPa and the
Landau constant was A≃− 1.3 MPa (see Supplementary Note 9). These material
parameters were then used to plot the theoretical dispersion curves, although
ultimately they are not needed.

We used a common household cling film (plastic wrap) made of 100%
polyethylene, with mass density ρ≃ 930 kg.m−3. The typical thickness of cling film
ranges from 8 to 13 μm. Here, we used Brillouin microscopy23 to accurately
measure the initial thickness of the film, which was 2h0= 11.7 ± 0.3 μm. This is
close to the axial resolution of the OCT system, and so we could not track h with
the deformation.

The bodhrán was purchased from Hobgoblin Music, MN, USA. The OCT
measurement was performed on the intact instrument. On separate direct
measurements after removing the skin from the frame, we found
h0= 0.36 ± 0.03 mm and ρ= 831 ± 65kg.m−3, respectively. To characterise the
fundamental vibration frequencies of the dry and damp bodhrán, the centre of the
drumhead was beaten every 10 s and the sound was recorded with a cellphone
10 cm away from the drumhead, using the Google Science Journal App (see
Supplementary Note 10).

Data availability
The data that support the findings of this study are available from the authors on
reasonable request.

Code availability
The code to get the master graph from the dispersion equation was prepared with Matlab
R2021a, which is available from the authors on reasonable request.
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SUPPLEMENTARY NOTE 1: LAMB WAVES IN A STRESSED FILM

Consider a plate with edges parallel to the Cartesian coordinates (x1, x2, x3), where −h ≤ x3 ≤ h so that the plate’s
current thickness is 2h, as illustrated in Supplementary Figure 1(a). Aligned with this axes are the principal stress
σ1, σ2, σ3, and we assume the faces are stress free, so that σ3 = 0.

The motion of a Lamb wave travelling along x1 axis with speed v and wavenumber k in an elastic incompressible
plate is in general governed by the following dispersion equation [1],(

tanh s1kh

tanh s2kh

)±1
=

s2(s21 + 1)2

s1(s22 + 1))2
, (S.1)

for symmetric (+1 exponent) and anti-symmetric modes (-1 exponent), and where s21, s22 are the roots of the quadratic

γs4 − (2β − ρv2)s2 + α− ρv2 = 0. (S.2)

Here α, β and γ are instantaneous elastic moduli, which satisfy

α− γ = σ1, α/γ = λ21/λ
2
3, (S.3)

independent of the materials properties. When the stress are due to an elastic deformation with the pre-stretches λ1,
λ2, λ3 along (x1, x2, x3), such that λ1λ2λ3 = 1 because of incompressibility, then

α =
σ1 − σ3
λ21 − λ23

λ21, γ =
σ1 − σ3
λ21 − λ23

λ23, 2β = λ21
∂2W

∂λ21
− 2λ1λ3

∂2W

∂λ1∂λ3
+ λ23

∂2W

∂λ23
+ 2λ1λ3

λ1
∂W
∂λ3
− λ3 ∂W∂λ1

λ21 − λ23
, (S.4)

where W = W (λ1λ2λ3) is the strain energy density, and the identities (S.3) follow immediately. Note that they also
hold when the origin of the pre-stress is not known [2, 3].
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Supplementary Figure 1. (a) Geometry of the stressed film. (b) Master dispersion curves for the fundamental modes, where

ηA0 =
√

(α− ρv2)/γ, ηS0 =
√

(ρv2 − α)/γ when kh ≤ 3.99 and ηS0 =
√

(α− ρv2)/γ when kh ≥ 3.99.

Now we consider the strain energy of isotropic incompressible third-order elasticity,

W = µ trE2 + (A/3)trE3, (S.5)

where E is the Green-Lagrange strain tensor, µ is the Lamé modulus of linear elasticity (µ = E/3, where E is Young’s
modulus) and A is the Landau constant of third-order elasticity (also known as n in the expansion of Murnaghan).
This strain energy is valid up to moderate strain [4]. It can be checked by hand, or with a Computer Algebra System,
that when taking a Taylor expansions for small elongations λi − 1, we obtain the identity[4] 2β = α + γ, which
substituted into (S.2) leads to

s21 =
α− ρv2

γ
, s22 = 1, (S.6)

and the dispersion equation takes the compact form (Eq. (1) in the main text),

4s1

(
tanh s1 kh

tanh kh

)±1
= (1 + s21)2. (S.7)
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For the fundamental A0 mode, the speed is always subsonic. We define ηA0 =
√

(α− ρv2)/γ, and for each value of
kh we solve

4ηA0
tanh ηA0 kh

tanh kh
= (1 + η2A0)2, (S.8)

numerically for ηA0, which leads to the A0 plot on Supplementary Figure 1(b). It starts at ηA0 = 1 as kh → 0 and
decreases toward 0.2956 (the root of the cubic x3 + x2 + 3x− 1 = 0) as kh→∞.

For the S0 modes in the low kh regime, the wave is supersonic and s21 < 0. We define ηS0 =
√

(ρv2 − α)/γ and for
each value of kh we solve

4ηS0
tanh kh

tan ηS0 kh
= (1− η2S0)2, (S.9)

numerically for ηS0, which leads to the first branch of the S0 plot on Supplementary Figure 1(b). This equation is valid

for kh ≤ 3.9973 (the root of the equation 4 tanhx = x). Finally for kh ≥ 3.9973, we define ηS0 as ηS0 =
√

(α− ρv2)/γ,
and we solve

4ηS0
tanh kh

tanh ηS0 kh
= (1 + η2S0)2, (S.10)

numerically for ηS0, which leads to the second branch of the S0 plot in Supplementary Figure 1(b).
In a material with significant structural anisotropy (not only strain-induced anisotropy), potentially due to the

presence of aligned collagen or fibers, the propagation and wave speed of the Lamb waves are modified accordingly.
In that case the strain energy (S.5) is no longer valid. However, our method could potentially be extended to this
scenario, or at least to certain special cases of anisotropy.
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SUPPLEMENTARY NOTE 2: SENSITIVITY ANALYSIS

Here we demonstrate how sensitive our prediction is to the stress σ1 when considering small errors in our mea-
surements. We focus on the sensitively analysis for the anti-symmetric mode A0, as the results for the S0 mode are
analogous.

For the analysis, assume for simplicity that for this mode we measure only two wave speeds v1 and v2, corresponding
to two different wavenumbers k1 and k2, respectively. We define η1 =

√
(α− ρv21)/γ and η2 =

√
(α− ρv22)/γ, which

we can solve for α and γ, and substitute into (S.3) to obtain

σ1 = 1
2 (ρv21 + ρv22) + 1

2 (ρv21 − ρv22)F, where F =
η21 + η22 − 2

η21 − η22
. (S.11)

There are several potential sources of errors in using this equation to predict the stress, coming from the error in
measuring the wave speeds and from the error in estimating the (non-dimensional) wavenumbers k1h and k2h. We
investigate the effect of these errors separately.

First we assume there is an error in measuring the wave speeds, which we call ρδv21 and ρδv22 ; the resulting error in
the stress δσ1, according to (S.11) is

δσ1 = 1
2ρδv

2
1(1 + F ) + 1

2ρδv
2
2(1− F ), so that

|δσ1|
ρ|δv2|

≤ 1
2 |1 + F |+ 1

2 |1− F |. (S.12)

Here we assumed that δv1 and δv2 are random and uncorrelated, and used |δv2| to represent the maximum error in
the squared velocities. We define c1 = 1

2 |1 + F |+ 1
2 |1− F | and plot this quantity in Supplementary Figure 2(c).

Next, we assume the wave speeds have been measured correctly, but that there is an error in estimating the
wavenumbers, which leads to

δσ1 = 1
2 (ρv21 − ρv22)

[
∂F

∂η1
δη1 +

∂F

∂η2
δη2

]
. (S.13)

Then, as we assume the wave speeds were measured accurately, we can use the exact relation ρv21 − ρv22 = γ(η22 − η21)
to rewrite this equation in the form

δσ1 = γ
δη22(1− η21)− δη21(1− η22)

η21 − η22
. (S.14)

For third-order elasticity (moderate strains) we have γ ∼ µ, the initial shear modulus, which we use below. Any
error committed when calculating η1 and η2 will be a result of an error in evaluating k1h and k2h, as shown by
equation (S.8). Hence we can write

δη21 =
∂η21

∂(k1h)
δ(k1h), δη22 =

∂η22
∂(k2h)

δ(k2h). (S.15)

Now there are two ways to commit the errors δ(k1h) and δ(k2h). The first is to miscalculate the frequencies k1 and
k2, which results in δ(k1h) = hδk1 and δ(k2h) = hδk2, in which case we can assume the errors are uncorrelated and
obtain

|δσ1|
µ|δk|h

≤
∣∣∣∣ ∂η21
∂(k1h)

∣∣∣∣ |1− η21 ||η21 − η22 |
+

∣∣∣∣ ∂η22
∂(k2h)

∣∣∣∣ |1− η22 ||η21 − η22 |
. (S.16)

Note that |σ1| < µ for moderate strains, so that the right hand-side is typically smaller than the relative error of the
stress. We call c2 the right hand side of the above inequality and plot it in Supplementary Figure 2(b).

The second way is to miscalculate the film depth h, which results in δ(hk1) = k1δh and δ(hk2) = k2δh, from which
we obtain

|δσ1|
µ|δh/h|

≤ 1

|η21 − η22 |

∣∣∣∣ ∂η21
∂(k1h)

k1h(1− η21)− ∂η22
∂(k2h)

k2h(1− η22)

∣∣∣∣ . (S.17)

We call c3 the right hand side of this inequality and plot it in Supplementary Figure 2(a).
To summarise, our expected in error in predicting the stress, denoted by δσ1, is such that

|δσ1|
µ

< c1
|ρδv2|
µ

+ c2|δk|h+ c3
|δh|
h
, (S.18)
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Supplementary Figure 2. The graphs show the sensitivity of our prediction of the stress, given by (S.3) due different sources
of potential error. In all the figures, it is assumed that the phase speeds v1 and v2 of an anti-symmetric Lamb wave are
measured at wavenumbers k1 and k2, respectively. For every plot, the white regions have errors larger than the values shown
in the accompanying legend. Supplementary 2(a) shows how relative errors in the squared speeds v21 and v22 affect the stress.
Supplementary Figure 2(b) shows how errors in estimating hk1 and hk2 affect the stress prediction. Supplementary Figure
2(c) shows how errors in estimating the depth h magnify, or decrease, the errors in predicting the stress. Finally, the values in
Supplementary Figure 2(d) times µ/λ give the error in the stress due to compressibility. For example, if µ/λ = 1, and µ = 0.02
GPa, then we would expect an error of 0.016 GPa in the stress when k1h = k2h = 4.

where δh, δk, δv, are the measurement errors in the sample depth h, the frequency k, and the wave speed v,
respectively. The coefficients c1, c2, c3 depend only on the two frequencies used for the measurement, k1 and k2, and
are independent of the material parameters.

For an example, let us consider the measurements made on the rubber membrane, as shown in Figure 1 of the
main paper. Its thickness is 2h ' 0.5 mm. In the case of N = 0 (no weights), at frequency f1 = 2 kHz, the speed
is v1 ' 7.5 m·s−1, so that k1h = 2πf1h/v1 = 0.42; at f2 = 16 kHz the speed is v2 ' 13.4 m·s−1, so that k2h = 1.9.
For these values of k1h and k2h we find from Supplementary Figure 2 that c2 ∼ 0.5 and c3 ∼ 0.3. The wavenumber
measurement error of our optical coherence tomography (OCT) system is δk/k ∼ 0.1%, see Supplementary Note 5.
The thickness measurement error δh/h ∼ 3% is estimated from the error bars of the thickness, see Supplementary
Figure 12 (note that it is because the thickness of the sample is not uniform, not because of the spatial resolution of
OCT, which is about 0.018 mm.) Therefore, we expect a prediction error |δσ1|/µ < 1% (for this calculation, we only
included the c2 and c3 coefficients, because instead of measuring the speed directly, we calculated it by the formula
v = 2πf/k.)
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SUPPLEMENTARY NOTE 3: ALMOST INCOMPRESSIBLE MATERIALS

Our analysis in Section requires that the material be incompressible. Here we show what errors to expect for
nearly-incompressible materials.

The equations governing Lamb waves in compressible solids are given by Ogden and Roxburgh [1]. Again, we
specialise to third-order elasticity. Then, to take the limit of near-incompressibility, we follow a method used by
Shams et al. [4], which in our case leads to taking a series expansion for small µ/λ, where µ and λ are the Lamé
constants of linear elasticity. To simplify, and be consistent with third-order elasticity [5], we also consider the strain
(or the stress) to be small. The results are

ρv2A = γηA + α+ 2(µ2/λ)FA(kh), ρv2S = α− γηS + 2(µ2/λ)FS(kh), (S.19)

for the anti-symmetric and symmetric modes, respectively. Here, the terms FA(kh) and FS(kh) depend on kh only;
for example,

FA(kh) =
(S2 − 2kh)η2A(1− η2A)(1 + η2A)2

S(−4C + khS)− 2((5 + 3C2)kh− 2S2)η2A + 6S(2C + khS)η4A + 4khS2η6A + khS2η8A
, (S.20)

where S = sinh(kh), C = cosh(kh), S2 = sinh(2kh), and C2 = cosh(2kh). Both FA and FS are shown in Supplemen-
tary Figure 3.

To investigate the error induced by small compressibility, we use (S.12) together with the above to arrive at

|δσ1|
µ

=
µ

λ
|FA(k1h)(1 + F ) + FA(k2h)(1− F )| , (S.21)

with F given in (S.11).
When the material is only slightly compressible, µ/λ � 1 and the error is small. However, for more compressible

materials, µ/λ is not small; hence for steel [5], µ/λ ' 0.8. The numerical values of the right hand-side in this equation
are shown in Supplementary Figure 2(d).

0 1 2 3 4
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0.5

1.0

1.5

2.0

2.5

3.0

FS

FA

Supplementary Figure 3. Variation of the terms FA and FS with kh. When FS or FA is small, the Lamb wave speed is
insensitive to the material compressibility, and conversely when FS or FA is large.
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SUPPLEMENTARY NOTE 4: M-B SCAN WITH OPTICAL COHERENCE TOMOGRAPHY
TO MEASURE LAMB WAVE PROPAGATION

To study and measure Lamb wave propagation, the OCT system works in a M-B scan mode, which is depicted
in Supplementary Figure 4. The laser beam scans synchronously with the stimulus signal sent to the PZT. At each
lateral location, we acquire ∼ 350 A lines (M scan) at a sampling rate of ∼ 43 kHz. Then the laser beam moves to
the next localisation (B scan). In total 96 lateral locations are measured. The vibration acquired from each M scan
is Fourier-transformed to obtain the amplitude A and phase ϕ, i.e., u3(t) = Aei(ωt+ϕ). Finally we report the real and
imaginary parts of the displacement, A cos (ωt+ ϕ) and A sin (ωt+ ϕ) , as shown in Figures 5(b) and (d) of the main
text.

M1 M2 M3 M96
...

OCT beam
position

Displacement
Aei(ωt + φ) 

Stimulus
Signal

A-line ...
~350 A lines

... ... ...

Timeline

Supplementary Figure 4. Schematic of the M-B scan.
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SUPPLEMENTARY NOTE 5: SENSITIVITY IN MEASURING THE WAVENUMBER USING OCT

The standard deviation in the measurement of the vibration amplitude A via a single A-line scan, denoted by δA,
is given by the optical signal-to-noise ratio (SNR) [6]: δA = λ0/(4πn0

√
SNR), where λ0 is the optical wavelength

(∼ 1280 nm) and n0 is the refractive index (∼ 1.4). At the surface of the sample we typically get SNR ≈ 40 dB.

This sensitivity is improved by a factor 1/
√
M upon averaging of M A-lines. The elastic wave profile is obtained by

measuring the displacement at N locations along the propagation direction and then Fourier-transformed to determine
its wavenumber k. When the beam scan length covers ∼ 3 wavelengths, we find that δk, the standard deviation error
of the wavenumber, is given by δk/k ≈ δA/(A

√
MN). With ∆A = 20 nm (see Figure 5(d) of the main text), M = 350,

and N = 96, we obtain δk/k ≈ 0.1%.
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SUPPLEMENTARY NOTE 6: HIGH-ORDER LAMB WAVE MODES
EXCITED AT HIGH-FREQUENCY RANGE

When the excitation frequency increases, high-order modes are excited by the probe. Supplementary Figure 5 shows
the dispersion relations of the rubber film in the unstressed state. Besides the A0 mode, other wave modes that can
be measured from the experiments are also reported. By comparing with the Lamb wave model, it is easy to identify
these wave modes as the S0 and A1 modes.
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Supplementary Figure 5. Dispersion relations of the different Lamb wave modes (A0, S0 and A1) and comparison with
theoretical curves. The theoretical curves are computed using the shear modulus obtained from the tensile test.
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SUPPLEMENTARY NOTE 7: MEASURING α AND γ TO DEDUCE THE STRESS AND STRAIN

For the fundamental A0 mode, we have ρv2 = α−γη2A0. Thus, we simply need to measure v at different frequencies:
then for each frequency we have a value of kh, or equivalently, a corresponding value of η2A0, found by solving (S.8).
Then by linear curve fitting we deduce α (the intercept) and γ (the opposite of the slope) and thus σ1 and λ1 from
(S.3).

Supplementary Figure 6 shows the linear regression when the uni-axial stress is due to N = 5 weights, from which
we get α ' 314.3 kPa and ' 147.2 kPa. According to Eq. (S.3), the stress σ1 is 167.1 kPa and the stretch λ1 is 1.29,
which agrees well with the applied stress 162.1 kPa and stretch 1.31.
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Supplementary Figure 6. Representative curve fitting to identify α and γ. Here N = 5 weights added. The linear fitting of
ρv2 to η2A0 gives α ' 314.3 kPa and γ ' 147.2 kPa (r2 = 0.998).
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SUPPLEMENTARY NOTE 8: LAMB WAVES TRAVELING
PERPENDICULAR TO THE UNIAXIAL STRESS

The analysis for the Lamb wave traveling along x2 (see Supplementary Figure 7) is the same as that for the wave
along x1. It yields the elastic moduli α′ and γ′, say, which give

α′ − γ′ = σ2, α′/γ′ = λ22/λ
2
3. (S.22)

For a general biaxial stress state, we solve Eqs. (S.3) and (S.22) to get the stretch ratios λ1 and λ2 (recalling that

λ1λ2λ3 = 1). In our experiments, the rubber film was uni-axially stretched (λ2 = λ3 = λ
−1/2
1 ), and we expect α′ = γ′

and σ2 = 0.
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Supplementary Figure 7. Dispersion relations of the Lamb waves traveling perpendicular to the uniaxial stress. The phase
velocities decrease when the stress increases. Here we find that |σ2| < 4 kPa, which is indeed almost zero compared to σ1.
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SUPPLEMENTARY NOTE 9: TENSILE TEST OF THE RUBBER FILM

Supplementary Figure 8 shows the tensile test and the fitting curve. The infinitesimal shear modulus µ ' 180 kPa
is obtained by fitting the initial stage (stretch ratio < 1.07) of the stretch-stress curve. To fit the whole curve we use
the Mooney-Rivlin model W = C10(λ21 +λ22 +λ23−3) +C01(λ21λ

2
2 +λ22λ

2
3 +λ23λ

2
1−3), with C10 ' 51 kPa and C01 ' 39

kPa. Then we recall that the Mooney-Rivlin model is equivalent, at the same level of approximation, to the general
model of third-order elasticity (S.5), with the connections [7] µ = 2(C10 + C01) and A = −8(C10 + 2C01), or here,
µ = 180 kPa, A = −1, 302 kPa.

These material parameters are used in the main text to produce theoretical dispersion curves and confirm the match
with the experimental data, although ultimately they are not needed for our stress measurement method through
OCT imaging.
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Supplementary Figure 8. Tensile test of the rubber film. Inset, photos of the undeformed and deformed sample. Scale bar,
5 mm.
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SUPPLEMENTARY NOTE 10: CHARACTERISATION OF THE BODHRÁN

To show that the tension can be reduced by wetting the inner side of the bodhrán skin, and so that the vibration
frequencies change, we used the experimental setup depicted in Supplementary Figure 9(a) to characterize the fun-
damental vibration frequencies of the dry and wet bodhrán. The bodhrán was beaten at its center every 10 seconds
and then the sound was measured with a cellphone using the Google Science Journal App. The cellphone was placed
about 10 cm away from the skin. As shown in Supplementary Figure 9(b), the fundamental vibration frequency was
∼ 84 Hz in the dry state. However, wetting the skin, as shown in Supplementary Figure 9(c), decreases the vibration
frequency to ∼ 36 Hz.
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Supplementary Figure 9. Vibration frequency of the bodhrán. (a) Schematic of the experiment. The bodhrán is beaten
every 10 seconds and then the sound intensity and frequency are measured by a cellphone. (b) Dry state. The fundamental
and second harmonic frequencies can be measured: ∼ 84 Hz and ∼ 155 Hz. (c) Wet state. The fundamental frequency drops
to ∼ 36 Hz.
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Supplementary Figure 10. Photos of the experimental setup. (a) Scanning laser of the OCT system. (b) and (c) show how
stress is applied to the film by a simple pulley/weight apparatus. (d) A zoomed-in view of (b) showing the sample and the
PZT that is used to drive the vibration of the probe.
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Supplementary Figure 11. Standard deviations of the experimental data shown in Figure 1(f) of the main text. Here, N
indicates the number of the weights.



S16

T
hi

ck
ne

ss
 2
h 

(m
m

)

0 50 100 150 200
0.3

0.4

0.5

0.6

Stress (kPa)

Supplementary Figure 12. Variation of the rubber sheet thickness (as tracked by OCT) with the stress, from N = 0 (stress-
free) to N = 6 weights of 20 g each. As expected, the thickness decreases as we increase the stress, due to the Poisson effect.
Error bars indicate standard deviations over five measurements performed at different locations of the sample.
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