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A B S T R A C T

Surface waves play important roles in many fundamental and applied areas from seismic
detection to material characterizations. Supershear surface waves with propagation speeds
greater than bulk shear waves have recently been reported, but their properties are not well
understood. Here we describe theoretical and experimental results on supershear surface waves
in rubbery materials. We find that supershear surface waves can be supported in viscoelastic
materials with no restriction on the shear quality factor. Interestingly, the effect of prestress
on the speed of the supershear surface wave is opposite to that of the Rayleigh surface wave.
Furthermore, anisotropy of material affects the supershear wave much more strongly than the
Rayleigh surface wave. We offer heuristic interpretation as well as theoretical verification of our
experimental observations. Our work points to the potential applications of supershear waves
for characterizing the bulk mechanical properties of soft solid from the free surface.

. Introduction

Surface wave motion in solids is a classical problem in mechanics, acoustics and seismology, and has found broad applications
n nondestructive testing (NDT) of materials (Herrmann et al., 2006; Garnier et al., 2013; Walker et al., 2012), surface acoustic
ave devices (Friend and Yeo, 2011; Ozcelik et al., 2018; Munk et al., 2019) and seismic activity monitoring (Debayle et al., 2020;
evshin et al., 2018; Gao et al., 2014). The Rayleigh (R) surface wave is the most well studied wave propagating on the free surface
f solid. Besides the R wave, another type of surface wave that travels with a greater speed than the bulk shear waves have been
bserved on the free surface of a solid (Le Goff et al., 2013; Pitre et al., 2019). This so-called supershear (SS) surface wave (or
upershear evanescent wave, SEW, see for example Pitre et al., 2019) allows the surface elastic energy to propagate away with a
reater speed and is likely responsible for the supershear dynamics at the surface, such as the supershear crack propagation and
upershear earthquake (Bhat et al., 2007; Das, 2007; Passelègue et al., 2013; Socquet et al., 2019). Besides the free surface, a very
ecent study by Nguyen et al. (2022) suggest the SEW can also be supported at the soft solid–fluid interface.

Recently, growing needs for mechanical characterization of soft matters, such as elastomers, hydrogels and biological tissues,
ave spurred renewed interests in surface wave motion (Li et al., 2018; Nam et al., 2016; Rudykh and Boyce, 2014; Pitre et al.,
019; Zhang and Greenleaf, 2007; Ramier et al., 2019; Dong et al., 2020; Norris and Parnell, 2012). While the R wave in soft matters
s well established and explored for applications, much less is known about SS surface waves (Pitre et al., 2019). SS surface waves
re inherently leaky in order to manifest a higher speed than bulk shear waves. While SS surface waves in elastic solids have been
escribed (Schröder and Scott, 2001), some studies (Carcione, 2007; Le Goff et al., 2013) claimed that SS surface waves can only be
upported when the shear wave quality factor (i.e., storage modulus/loss modulus) is less than 6.29, and there has been a debate
hether SS surface waves is supported in viscoelastic materials with weak attenuation.
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Fig. 1. Experimental observation of SS waves in an elastomer. (a) Experimental setup. (b) and (c) The amplitude and phase maps of the top surface and the
cross-section. The arrows and dashed lines indicate nodes of destructive interference between the SS and R waves.(d) A comparison of the experiment (𝑓𝑠 = 12
kHz) and the theoretical model for the surface displacement. Markers, experiment; lines, theory. Inset: the total wave amplitude. (e) A comparison in the
wavenumber domain. (f) and (g) Surface displacements of the R and SS waves calculated from the theoretical model. Solid and dashed lines denote the real
and imagery parts, respectively. (h) Amplitudes of the R and SS waves.

Another aspect of the SS surface waves that remains unexplored is how the anisotropy of the solid affects the speeds of the SS
surface waves. The theory of surface waves in anisotropic elastic materials has been well established owing to the early contributions
to this field (Farnell, 1970; Stroh, 1962, 1958; Barnett and Lothe, 1985; Biryukov, 1985; Fu and Mielke, 2002). A summary of the
work can be found in the review paper by Chadwick and Smith (1977). Notably, the theoretical work by Farnell (1970) successfully
explains the experimental observation of the pseudo surface waves. Pseudo surface waves can arise near the [110] direction, on the
(001) plane of the cubic crystals. Along these directions, two shear waves exist; the one with a polarization direction lying in the
(001) plane has a lower speed (denoted by T2) than the one with a polarization direction perpendicular to the (001) plane (denoted
by T1). The speed of the Rayleigh surface is lower than the two shear waves, whereas the pseudo surface wave has a greater speed
than T2 but lower than T1. The greater speed makes the pseudo surface wave a leaky mode. However, the attenuation of the pseudo
surface is rather weak due to its weak coupling with T2. The SS surface wave has a speed greater than the two shear waves, which
usually results in a far stronger attenuation due to the coupling with T1. The strong attenuation implies that the SS surface waves
can only be observed in the near field (evanescent field), which is likely the reason why the SS surface waves have been overlooked
in crystals.

In this study, we reveal several underappreciated properties of SS waves in soft materials via experimental and theoretical
investigations. Firstly, we show the SS waves can be supported over a broad frequency range, with no restriction on dissipation
of the material. Secondly, we show that the compressive/tensile stress on the soft material increases/decreases the speed of the SS
wave, which is opposite to what is commonly known for R wave. We account for this interesting result using the acoustoelastic
theory, finite-element (FE) simulation, and simple heuristic explanation. Extending this finding, we show how material anisotropy
affects SS waves distinctly different from R waves.

2. Experimental observation of supershear surface wave using optical coherence tomography

To demonstrate the SS waves in soft materials, we built the experimental setup depicted in Fig. 1(a) using a home-built optical
coherence tomography (OCT) (Ramier et al., 2019). The sample is a silicone rubber Ecoflex 0050, Smooth-On Inc., with mass density
𝜌 ≈ 1070 kg∕m3 and refractive index 𝑛 ≈ 1.4. The approximate size is 8 × 4 cm2 in the lateral extent and 4 cm along depth, which is
large enough to avoid wave reflections at the edges. Mechanical waves were excited by a vertically vibrating, flat tip with a circular
contact area with a radius 𝑎 of ∼ 0.75 mm, which is driven by a PZT actuator. The driving frequency of the PZT, 𝑓𝑠, can be tuned
from 100 Hz to 20 kHz. To measure the wave propagation, we operated the OCT with a M-B scan mode (Ramier et al., 2019). In
brief, when the probe started to vibrate, the laser beam was triggered to continuously scan 350 times at a location (M scan), with
a acquisition rate of ∼43.2 kHz. Then the laser beam was moved to another location by a galvanometer scan mirror, and the M
scan were repeated (B Scan). The displacement measured from each M scan was Fourier transformed to obtain the real and imagery
parts of the displacement.

Fig. 1(b)–(c) show a representative wave field measured when 𝑓𝑠 = 12 kHz. The minimums in wave amplitude and fluctuations
in phase (indicated by dashed lines and arrows in Fig. 1(b)–(c)) represent destructive interference between the R and SS waves.
The two wave modes can be resolved in wavenumber domain. By performing the Fourier transformation to the radical surface
displacement shown in Fig. 1(d), we move the data from the spatial domain to the wavenumber domain, where two peaks that
correspond to the R and SS waves, respectively, can be identified (see Fig. 1(e)). This experimental observation clearly suggests the
R and SS waves are two predominant surface wave modes in the near-field.
2



Journal of the Mechanics and Physics of Solids 169 (2022) 105085G.-Y. Li et al.

n

a

3. Mechanical model for surface wave excitation

To understand the experiment, we perform a theoretical study on the surface waves and obtain an analytical solution for the
ear-field surface displacement. Consider a semi-finite solid which occupies the space 𝑧 ≥ 0, as shown in Fig. 1(a). Since the problem

is axisymmetric, we introduce a cylindrical coordinate system (𝑟, 𝜃, 𝑧) and suppose the tip imposes a uniform time-harmonic pressure
𝑝(𝑟, 𝑡) = 𝑝0𝑒𝑖𝜔𝑡 (𝑟 ≤ 𝑎) to the contact surface, where 𝑝0 denotes the amplitude of the pressure, 𝑎 is the radius of the cylindrical tip, 𝑡 is
the time, and 𝜔 = 2𝜋𝑓𝑠. The time-harmonic stimulus results in the displacement 𝒖 = 𝒖0𝑒𝑖𝜔𝑡, where 𝒖0 = 𝑢0𝑟𝒆𝑟+𝑢0𝑧𝒆𝑧. 𝐞𝑟 and 𝐞𝑧 denote
the unit vectors along 𝑟 and 𝜃 directions, respectively. Inserting 𝒖 into the equation of motion (𝜆+2𝜇)∇∇ ⋅𝒖−𝜇∇×∇×𝒖 = 𝜌𝜕2𝒖∕𝜕𝑡2,
we get

(𝜆 + 2𝜇)∇∇ ⋅ 𝒖0 − 𝜇∇ × ∇ × 𝒖0 = −𝜌𝜔2𝒖0, (1)

where 𝜌 is the density. 𝜆 and 𝜇 are Lamé constants and 𝜆 ≫ 𝜇 for soft solids studied here.
To solve this problem, we introduce 𝜙 = ∇ ⋅ 𝒖0 and 𝜓𝒆𝜃 = ∇ × 𝒖0, where 𝒆𝜃 denotes the unit vector along 𝜃 direction.

𝜙 = 1
𝑟
𝜕(𝑟𝑢0𝑟)
𝜕𝑟

+
𝜕𝑢0𝑧
𝜕𝑧

, 𝜓 =
𝜕𝑢0𝑟
𝜕𝑧

−
𝜕𝑢0𝑧
𝜕𝑟

. (2)

Inserting Eq. (2) into Eq. (1) we get

(𝜆 + 2𝜇)
𝜕𝜙
𝜕𝑧

−
𝜇
𝑟
𝜕(𝑟𝜓)
𝜕𝑟

+ 𝜌𝜔2𝑢0𝑧 = 0, (𝜆 + 2𝜇)
𝜕𝜙
𝜕𝑟

+ 𝜇
𝜕𝜓
𝜕𝑧

+ 𝜌𝜔2𝑢0𝑟 = 0. (3)

Eliminating 𝜙 and 𝜓 from Eq. (3) yields following decoupled equilibrium equations

1
𝑟
𝜕
𝜕𝑟

(

𝑟
𝜕𝜙
𝜕𝑟

)

+
𝜕2𝜙
𝜕𝑧2

+ 𝑘2𝐿𝜙 = 0, 𝜕
𝜕𝑟

[ 1
𝑟
𝜕
𝜕𝑟

(𝑟𝜓)
]

+
𝜕2𝜓
𝜕𝑧2

+ 𝑘2𝑆𝜓 = 0, (4)

where 𝑘𝐿 = 𝜔∕
√

(𝜆 + 2𝜇)∕𝜌 and 𝑘𝑆 = 𝜔∕
√

𝜇∕𝜌.
The in-plane components of the Cauchy stress 𝝈, expressed in terms of 𝜙 and 𝜓 , are (neglecting the time harmonic terms)

𝜌𝜔2

𝜇2
𝜎𝑧𝑧 =

2
𝑟
𝜕
𝜕𝑟

(

𝑟
𝜕𝜓
𝜕𝑧

)

−
𝜈2(𝜈2 − 2)

𝑟
𝜕
𝜕𝑟

(

𝑟
𝜕𝜙
𝜕𝑟

)

− 𝜈4
𝜕2𝜙
𝜕𝑧2

,

𝜌𝜔2

𝜇2
𝜎𝑧𝑟 =

𝜕
𝜕𝑟

[

1
𝑟
𝜕(𝑟𝜓)
𝜕𝑟

]

−
𝜕2𝜓
𝜕𝑧2

− 2𝜈2
𝜕2𝜙
𝜕𝑟𝜕𝑧

,
(5)

where 𝜈 = 𝑘𝑆∕𝑘𝐿. The boundary conditions on the free surface are

𝜎𝑧𝑧 = 𝑝0(𝑟 ≤ 𝑎), 𝜎𝑧𝑧 = 0(𝑟 > 𝑎), 𝜎𝑧𝑟 = 0, (6)

where we again neglect the time harmonic terms. Inserting Eq. (6) into Eq. (5) we thus get the boundary conditions expressed in
terms of 𝜙 and 𝜓 .

To solve Eq. (4), here we follow the Miller’s work (Miller et al., 1954) and perform Hankel transformation to Eq. (4) (from 𝑟 to
𝑘)

d2𝜙̄0

d𝑧2
− (𝑘2 − 𝑘2𝐿)𝜙̄0 = 0,

d2𝜓̄1

d𝑧2
− (𝑘2 − 𝑘2𝑆 )𝜓̄1 = 0, (7)

where 𝜙̄0 and 𝜓̄1 are the 0 and 1-order Hankel transformations of 𝜙 and 𝜓 , i.e.,

𝜙̄0(𝑘, 𝑧) = ∫

∞

0
𝜙(𝑟, 𝑧)𝑟𝐽0(𝑘𝑟)d𝑟, 𝜓̄1(𝑘, 𝑧) = ∫

∞

0
𝜓(𝑟, 𝑧)𝑟𝐽1(𝑘𝑟)d𝑟, (8)

where 𝐽0 and 𝐽1 are the Bessel function of the first kind of order 0 and 1, respectively. Similarly, we perform Hankel transformations
of Eqs. (5) and (6) to get

𝜌𝜔2

𝜇2
𝜎̄𝑧𝑧,0 = −𝜈4

𝜕2𝜙̄0

𝜕𝑧2
+ 2𝑘

d𝜓̄1
d𝑧

+ 𝜈2(𝜈2 − 2)𝑘2𝜙̄0,
𝜌𝜔2

𝜇2
𝜎̄𝑧𝑟,1 = −

(

d2𝜓̄1

d𝑧2
− 2𝜈2𝑘

d𝜙̄0
d𝑧

+ 𝑘2𝜓̄1

)

, (9)

nd

𝜎̄𝑧𝑧,0 =
𝑎𝑝0𝐽1(𝑘𝑎)

𝑘
, 𝜎̄𝑧𝑟,1 = 0, (10)

where 𝜎̄𝑧𝑧,0 and 𝜎̄𝑧𝑟,1 are the 0 and 1-order Hankel transformations of 𝜎𝑧𝑧 and 𝜎𝑧𝑟, respectively.
Solving Eq. (7) with the boundary conditions given by Eqs. (9) and (10), we get

𝜙̄0 =
𝜌𝜔2(𝑘2𝑆 − 2𝑘2)

𝜈2𝜇2𝑘 (𝑘)
𝑎𝑝0𝐽1(𝑘𝑎)𝑒

−𝑧
√

𝑘2−𝑘2𝐿 , 𝜓̄1 =
2𝜌𝜔2

√

𝑘2 − 𝑘2𝐿
𝜇 (𝑘)

𝑎𝐽1(𝑘𝑎)𝑒
−𝑧
√

𝑘2−𝑘2𝑆 , (11)

where

 (𝑘) = (2𝑘2 − 𝑘2 )2 − 4𝑘2
√

𝑘2 − 𝑘2
√

𝑘2 − 𝑘2 . (12)
3
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It should be noted that in Eq. (11), we have taken 𝑒−𝑧
√

𝑘2−𝑘2𝑆 for 𝜓̄1 to make sure 𝜓̄1 → 0 when 𝑧→ +∞. For SS wave, however, we
should take 𝑒𝑧

√

𝑘2−𝑘2𝑆 for 𝜓̄1 to manifest the leaky nature of the SS wave (see discussions on the nature of a leaky wave mode in,
for example, Refs. Farnell (1970) and Xu and Wu (2013)). This choice results in a plus sign for the second term of  (𝑘). To get a
universal form for the secular equation, we replace the Eq. (12) with

 (𝑘) = (2𝑘2 − 𝑘2𝑆 )
2 − 4𝑘2

√

𝑘2 − 𝑘2𝐿
√

𝑘2 − 𝑘2𝑆 ⋅ sign{Re(𝑘2 − 𝑘2𝑆 )}. (13)

Inserting Eq. (11) into the Hankel transformation of Eq. (2), we get the Hankel transformations of 𝑢0𝑧 and 𝑢0𝑟, denoted by 𝑢̄𝑧,0
and 𝑢̄𝑟,1, are

𝑢̄𝑧,0 =
𝑎𝑝0𝐽1(𝑘𝑎)

√

𝑘2 − 𝑘2𝐿
𝜇𝑘 (𝑘)

[

2𝑘2𝑒−𝑧
√

𝑘2−𝑘2𝑆 + (𝑘2𝑆 − 2𝑘2)𝑒−𝑧
√

𝑘2−𝑘2𝐿

]

,

𝑢̄𝑟,1 =
𝑎𝑝0𝐽1(𝑘𝑎)
𝜇 (𝑘)

[

2
√

𝑘2 − 𝑘2𝐿
√

𝑘2 − 𝑘2𝑆𝑒
−𝑧
√

𝑘2−𝑘2𝑆 + (𝑘2𝑆 − 2𝑘2)𝑒−𝑧
√

𝑘2−𝑘2𝐿

]

.

(14)

The displacements 𝑢0𝑧 and 𝑢0𝑟 can be obtained by performing inverse Hankel transformations to Eq. (14). Here we focus on the
vertical displacement 𝑢0𝑧, which can be measured using our experimental setup. From the inverse Hankel transformation of 𝑢̄𝑧,0 we
get

𝑢0𝑧(𝑟, 𝑧) =
𝑎𝑝0
𝜇 ∫

∞

0

𝐽1(𝑘𝑎)
√

𝑘2 − 𝑘2𝐿
 (𝑘)

[

2𝑘2𝑒−𝑧
√

𝑘2−𝑘2𝑆 + (𝑘2𝑆 − 2𝑘2)𝑒−𝑧
√

𝑘2−𝑘2𝐿

]

𝐽0(𝑘𝑟)d𝑘. (15)

ccording to Royston et al. (1999), an equivalent form of Eq. (15) is

𝑢0𝑧(𝑟, 𝑧) =
𝑎𝑝0𝑖
𝜋𝜇 ∫

∞

−∞

𝐽1(𝑘𝑎)
√

𝑘2 − 𝑘2𝐿
 (𝑘)

[

2𝑘2𝑒−𝑧
√

𝑘2−𝑘2𝑆 + (𝑘2𝑆 − 2𝑘2)𝑒−𝑧
√

𝑘2−𝑘2𝐿

]

𝐾0(−𝑖𝑘𝑟)d𝑘, (16)

where 𝐾0 is the modified Bessel function of the second kind. The superiority of Eq. (16) is that the Cauchy principal value theorem
is applicable. There are some comprehensive discussions on how to deal with the contributions from the poles and the branch
cuts (Graff, 1991; Harris and Achenbach, 2002; Schröder and Scott, 2001) when performing the integration in Eq. (16). Since we
are only interested in the surface waves, we can neglect the contributions of the branch integrals and only consider the contributions
of the residues (Graff, 1991). Therefore, we get

𝑢𝑧(𝑟, 0) =
2𝑎𝑝0𝑘2𝑆
𝜇

∑

𝑘

𝐽1(𝑘𝑎)
√

𝑘2 − 𝑘2𝐿
 ′(𝑘)

𝐾0(𝑖𝑘𝑟), (17)

where  ′ = 𝜕∕𝜕𝑘, and 𝑘 denotes the root of  (𝑘) = 0.
For soft materials with 𝜆 ≫ 𝜇, we have 𝑘, 𝑘𝑆 ≫ 𝑘𝐿. In this case Eq. (13) reduce to

 (𝑘) = (2𝑘2 − 𝑘2𝑆 )
2 − 4𝑘2

√

𝑘2(𝑘2 − 𝑘2𝑆 ) ⋅ sign{Re(𝑘
2 − 𝑘2𝑆 )}. (18)

Two roots of Eq. (18) that correspond to the Rayleigh and supershear surface waves, respective, are 𝑘𝑅 = 1.047𝑘𝑆 and

𝑘𝑆𝑆 = (0.4696 − 0.1355𝑖)𝑘𝑆 . (19)

The other root of Eq. (18), however, has a positive imagery part, which denotes an exponential increase in wave amplitude along
the radial direction. This root is physically unrealistic thus is excluded (Schröder and Scott, 2001).

Inserting 𝑘𝑅 and 𝑘𝑆𝑆 into Eq. (17) we get

𝑢0𝑧(𝑟) = 𝑖𝜋
𝑎𝑝0𝑘2𝑆
𝜇

[

𝐽1(𝑘𝑅𝑎)𝑘𝑅
 ′(𝑘𝑅)

𝐻 (1)
0 (−𝑘𝑅𝑟) +

𝐽1(𝑘𝑆𝑆𝑎)𝑘𝑆𝑆
 ′(𝑘𝑆𝑆 )

𝐻 (1)
0 (−𝑘𝑆𝑆𝑟)

]

= 𝑢𝑅𝑧 (𝑟) + 𝑢
𝑆𝑆
𝑧 (𝑟), (20)

where we have used the Hankel function of the first kind 𝐻 (1)
0 (𝑥) to take the place of 𝐾0(𝑥) (note that 𝐾0(𝑥) = 𝑖𝜋∕2𝐻 (1)

0 (𝑖𝑥)). For
large 𝑟, 𝐻 (1)

0 (−𝑘𝑟) → 𝑒−𝑖𝑘𝑟𝑟−1∕2; Eq. (20) describes the two propagating waves with wavenumbers, 𝑘𝑅 and 𝑘𝑆𝑆 .
The phase velocity 𝑐 of a wave is related to its wavenumber 𝑘, via 𝑐 = 2𝜋𝑓𝑠∕Re(𝑘). For elastic materials with a real value of 𝑘𝑆 ,

according to Eq. (19) the SS wave is leaky with a complex value of 𝑘𝑆𝑆 , and 𝑐𝑆𝑆 = 2.13𝑐𝑇 0, where 𝑐𝑇 0 =
√

𝜇∕𝜌 is the shear wave
peed. For viscoelastic materials, we find 𝑐𝑆𝑆∕𝑐𝑇 0 increases slightly as the shear quality factor 𝑄, which is defined as

𝑄 = Re(𝜇)∕ Im(𝜇), (21)

decreases; for example, it is 2.18 at 𝑄 = 6 and 2.99 at 𝑄 = 0.
The two terms in Eq. (20) result in the interference patterns observed in our experiments. To quantitatively compare the

theoretical model and experiments, in Fig. 1(d) we show the experimental displacements (markers) along the radial direction at
𝑓𝑠 = 12 kHz and the theoretical curves obtained by fitting the data with Eq. (20) with 𝑘𝑆 as the only fitting parameter. The best
fitting gives the storage modulus 𝜇′ = 110.8 ± 2.2 kPa and the loss modulus 𝜇′′ = 33.7 ± 2.9 kPa (𝜇 = 𝜇′ + 𝑖𝜇′′). By performing
the Fourier transformation we move the data from the spatial domain to the wavenumber domain (see Fig. 1(e)) and observe two
4
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peaks that correspond to the R and SS waves, respectively. The theoretical model shows a good agreement with the experiment
in the wavenumber domain. Strictly speaking, an inverse Hankel transformation is required to extract the wavenumber from the
displacement profiles. However, we find that the Fourier transformation is a convenient approximation with errors less than 4% for
all our experimental cases.

In Fig. 1(f) and (g) we plot 𝑢𝑅𝑧 (𝑟) and 𝑢𝑆𝑆𝑧 (𝑟), respectively. As shown in Fig. 1(h), the wave amplitudes decrease exponentially
over 𝑟, much steeper than the 𝑟−1∕2 dependence expected for radially propagating surface waves in pure elastic materials (Rose,
2014). The fast exponential decay is due to the viscoelasticity of the sample. The decay rate of SS and Rayleigh surface waves can
be comparable, highlighting the essential role of the SS surface wave in soft materials, especially in the high-frequency regime.

4. Supershear surface wave is supported in incompressible materials with no restriction on the shear quality factor 𝑸

The existence of the SS waves has been debated. Some studies claimed that the SS waves can only exist when 𝑄 < 6.29 (see
discussions on page 146 of Carcione (2007)). This claim is supported by a recent experimental study, in which the SS waves were
observed when 𝑄 ≈ 1.32 (Le Goff et al., 2013). However, another theoretical study predicts the existence of the SS waves in elastic
materials (𝑄 is infinite) with Poisson’s ratios greater than 0.26 (Schröder and Scott, 2001). Since the Poisson’s ratios for soft materials
interested in present study are close to 0.5, the claim given by Schröder and Scott (2001) seems to indicate that SS waves are
supported with no restriction on the shear quality factor 𝑄. To address this debate we further studied the effect of viscoelasticity
on SS waves.

For the rubber sample we varied the stimulus frequency from 100 Hz to 20 kHz. Fig. 2(a) and (b) show the surface displacements
obtained at 𝑓𝑠 from 2 kHz to 20 kHz in the spatial and wavenumber domains, which quantitatively agree with our theoretical
predictions (see the comparison in Fig. 3). The relative amplitudes of the two modes are frequency dependent because the excitation
efficiencies of the waves are sensitive to the ratios between the wavelengths and the size, 𝑎, of pressure loading. From Eq. (20), for
𝑎 = 0.75 mm we find that |𝑢𝑆𝑆𝑧 (𝑎)| > |𝑢𝑅𝑧 (𝑎)| when 𝑓𝑠 > 5 kHz, indicating the SS wave is primarily excited at high frequency regime.
This result explains the previous experimental observation where the SS waves become dominant if applying a high-speed impact
to the surface (Le Goff et al., 2013). In the low frequency regime, only the R wave can be robustly measured (100 Hz to 1 kHz, see
the gray markers in Fig. 2(c)) likely because the lateral scan length of our OCT system is too short to capture the SS waves.

From the measured wavenumbers, the phase velocities are computed, as shown in Fig. 2(c) and (d). By fitting the broad band
dispersion relation (100 Hz to 20 kHz), we find the viscoelasticity of the sample approximately follows the power-law rheological
model (Torvik and Bagley, 1984)

𝜇 = 𝜇𝑒
[

1 + (𝑖2𝜋𝑓𝜏)𝑚
]

, (22)

with 𝜇𝑒 = 49.3 kPa, 𝜏 = 3.5 × 10−5 s and 𝑚 = 0.45, as shown in Fig. 2(c). The speeds of the SS waves predicted by this model agree
quantitatively with our experiments (see Fig. 2(d)). According to the definition given in Eq. (21), the 𝑄 for the SS waves (2 kHz to
20 kHz) are less than 3.4. And to make 𝑄 > 6.29, 𝑓𝑠 should be lower than 300 Hz, a frequency that is too low for the OCT system
to capture the SS waves even if they exist.

To study the scenario when 𝑄 > 6.29 with our OCT system, we performed measurements on a piece of hydrogel sample in which
entanglements greatly outnumber cross-links. This type of hydrogel has a relatively low material damping, as recently shown by
Kim et al. (2021) (details on the sample preparation can be found in this paper). Fig. 4(a) and (b) show the surface waves in the
spatial and wavenumber domains, respectively, when the stimulus frequency is 31.6 kHz. The wave attenuation is much weaker
comparing with the rubber sample. In the wavenumber domain, both the SS and R waves can be clearly identified, although the
R wave is dominant. To evaluate the 𝑄, we measured the phase gradient and attenuation of the R wave using the far field data
(𝑟 > 1.2 mm, see Fig. 4(c) and (d)), where the SS wave has been attenuated. The phase gradient and attenuation give directly the
complex wavenumber of the R wave, 𝑘𝑅 = (23.2−1.41𝑖) mm−1. Therefore, we get 𝑄 ≈ 8.23, well above the restriction 6.29. Certainly,
this experiment provides a direct evidence that the SS waves exist without restriction on the quality factor.

5. Acoustoelasticity of supershear surface waves

We proceed to study the effect of prestress on SS waves. To this end, the incremental dynamic theory (Ogden, 2007) is briefly
revisited and then adopted to derive the secular equation for the surface waves that incorporates the effect of prestress.

5.1. Incremental dynamics

Consider, a nominal stress 𝑵 homogeneously deforms the sample from the stress-free configuration to the current configuration
in which the surface waves propagate. The infinitesimal elastic wave 𝒖 in the current configuration is governed by the incremental
dynamic equation (Ogden, 2007)

0
𝑝𝑖𝑞𝑗𝜕

2𝑢𝑗∕𝜕𝑥𝑝𝜕𝑥𝑞 − 𝜕 ̂̄𝑝∕𝜕𝑥𝑖 = 𝜌𝜕2𝑢𝑖∕𝜕𝑡2, (23)

where the Einstein summation convention has been adopted. 𝟎 is the Eulerian elasticity tensor and defined as 0
𝑝𝑖𝑞𝑗 =

𝐹𝑝𝛼𝐹𝑞𝛽𝜕2𝑊 ∕𝜕𝐹𝑖𝛼𝜕𝐹𝑗𝛽 (𝑖, 𝑗, 𝑝, 𝑞, 𝛼, 𝛽 = 1, 2, 3), where 𝑊 (𝑭 ) is the strain energy function, 𝐹𝑖𝛼 = 𝜕𝑥𝑖∕𝜕𝑋𝛼 is the deformation gradient,
and 𝑥𝑖 and 𝑋𝛼 denote the Cartesian coordinates of the points in the current and stress-free configurations. The nominal stress is

−1
5

related to the strain energy function by 𝑵 = 𝜕𝑊 ∕𝜕𝑭 − 𝑝̄𝑭 , where 𝑝̄ is the Lagrange multiplier for the incompressibility constraint.
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𝑝

Fig. 2. (a) The real and imagery parts of the surface displacement. (b) The Fourier transformation of the surface displacement to resolve the R and SS waves.
(c) Phase velocity of R wave. The low frequency data (gray markers) was obtained using the same experimental setup as the high frequency measurements
(green markers). Dashed line, fitting curve using the power-law rheological model with 𝜇𝑒 = 49.3 kPa, 𝜏 = 3.5 × 10−5 s and 𝑚 = 0.45. (d) Phase velocities of the
SS wave and the comparison with the power-law model.

̂̄ denotes the increment of 𝑝̄. Denote the principal stretch ratios by 𝜆𝑖 (𝑖 = 1, 2, 3), then we have 𝑭 = diag(𝜆1, 𝜆2, 𝜆3). For the
incompressible materials we are interested in this study, 𝜆1𝜆2𝜆3 = 1 and

∇ ⋅ 𝒖 = 0. (24)

We consider the plane wave in 𝑥1−𝑥3 (i.e., 𝑢2 = 0 and 𝜕()∕𝜕𝑥2 = 0). From Eq. (24) we can introduce a stream function 𝜒(𝑥1, 𝑥3, 𝑡)
such that: 𝑢1 = 𝜕𝜒∕𝜕𝑥3 and 𝑢3 = −𝜕𝜒∕𝜕𝑥1. Inserting these into Eq. (23) and eliminating ̂̄𝑝 we can get

𝛼𝜒,1111 + 2𝛽𝜒,1133 + 𝛾𝜒,3333 = 𝜌(𝜒,11𝑡𝑡 + 𝜒,33𝑡𝑡), (25)

where (),𝑖 and (),𝑡 denote the partial deviates with respect to coordinate 𝑥𝑖 (𝑖 = 1, 3) and 𝑡, and

𝛼 = 0
1313, 2𝛽 = 0

1111 +0
3333 − 20

1133 − 20
3113, 𝛾 = 0

3131. (26)

5.2. Surface wave

On the surface (𝑥3 = 0) the stress-free boundary conditions apply. So the incremental nominal stresses, denoted by 𝑵̂ , which
can be expressed with 𝜒 by (Ogden, 2007)

𝑁̂31 = −𝛾𝜒,11 + 𝛾𝜒,33, 𝑁̂33,1 = 𝜌𝜒,3𝑡𝑡 − (2𝛽 + 𝛾)𝜒,113 − 𝛾𝜒,333, (27)

should be zeros.
To derive the secular equation for surface wave, we can take

𝜒 = 𝜒̄𝑒−𝑠𝑘𝑥3𝑒𝑖(𝜔𝑡−𝑘𝑥1), (28)

where 𝑠 is a dimensionless attenuation and 𝜒̄ is a constant amplitude. Substitution of Eq. (28) into Eq. (25) yields

𝛾𝑠4 − (2𝛽 − 𝜌2)𝑠2 + 𝛼 − 𝜌2 = 0, (29)

where  = 𝜔∕𝑘. Here we use 𝑠1 and 𝑠2 to denote the two roots of Eq. (29) that have positive real parts. Similar as the discussion in
Section 3, for Rayleigh surface wave we take

𝜒 =
(

𝜒̄ 𝑒−𝑠1𝑘𝑥3 + 𝜒̄ 𝑒−𝑠2𝑘𝑥3
)

𝑒𝑖𝑘(𝑡−𝑥1), (30)
6
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Fig. 3. Comparison between experiment and theory. (a) and (b) Real and imagery parts of the surface displacements. (c) Fourier transformations of the
displacements. Solid and dashed lines denote experiment and theory, respectively.

where

𝑠21 + 𝑠
2
2 = (2𝛽 − 𝜌2)∕𝛾, 𝑠21𝑠

2
2 = (𝛼 − 𝜌2)∕𝛾 (31)

according to Eq. (29). Substitution of Eq. (30) into Eq. (27) yields the following linear equations of 𝜒̄1 and 𝜒̄2

(𝑠21 + 1)𝜒̄1 + (𝑠22 + 1)𝜒̄2 = 0,
[

2𝛽 + 𝛾 − 𝜌2 − 𝛾𝑠21
]

𝑠1𝜒̄1 +
[

2𝛽 + 𝛾 − 𝜌2 − 𝛾𝑠22
]

𝑠2𝜒̄1 = 0. (32)

To have nontrivial solutions for Eq. (32) we must have

𝛾(𝛼 − 𝛾 − 𝜌2) + (2𝛽 + 2𝛾 − 𝜌2)
[

𝛾(𝛼 − 𝜌2)
]

1
2 = 0. (33)

In the derivation of Eq. (33) we have used Eq. (31).
For the supershear surface wave, we should take, without loss of generality, 𝑠1 and −𝑠2. In this way we get a sign change in

Eq. (33). Similar as Eq. (18), we finally get

𝛾(𝛼 − 𝛾 − 𝜌2) + (2𝛽 + 2𝛾 − 𝜌2)
[

𝛾(𝛼 − 𝜌2)
]

1
2 sign{Re(𝛼 − 𝜌2)} = 0. (34)

Eq. (34) is the secular equation that incorporates the effect of the prestress, from which the phase velocity of the surface wave 𝑐
can be obtained by 𝑐 =

[

Re(−1)
]−1. While different notations has been adopted, Eq. (34) will reduce to Eq. (18) in the absence of

prestress (𝛼 = 𝛽 = 𝛾 = 𝜇, where 𝜇 is the linear shear modulus).
It has been shown that the parameters 𝛼 and 𝛽 can be directly related to the Cauchy principal stresses (Li et al., 2020). Then for

third-order elasticity (2𝛽 ≈ 𝛼+𝛾), we can infer 𝛼 and 𝛽, and thus the prestress, from the speeds of the two surface waves. Establishing
such an inverse method to infer the prestress is an exciting topic, which, however, falls out of the scope of current work.

To demonstrate the effect of the prestress, here we consider a nominal uniaxial stress 𝑵11 in a lateral coordinate, 𝑥1, and its
resulting nominal strain 𝜀 along the direction. For isotropic, incompressible, hyperelastic materials, the deformation gradient tensor
is given by 𝑭 = diag(1 + 𝜀, (1 + 𝜀)−1∕2, (1 + 𝜀)−1∕2). Among different hyperelastic models, we consider the Mooney–Rivlin model that
7
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Fig. 4. Surface waves measured in a tough hydrogel (31.6 kHz). (a) Real and imagery parts of the surface displacement. (b) Wave amplitude in the wavenumber
domain obtained by the Fourier transform of (a). Amplitude (c) and phase (d) of surface displacement in the far field (𝑟 > 1.2 mm). The linear fits of (c) and
(d) give 𝑘𝑅 = (23.3 − 1.41𝑖) mm−1.

Fig. 5. (a) Uniaxial extension setup. (b)–(c) Variations of the phase velocities of the R and SS waves, and (d) their ratios at different 𝜀. Circles, experimental
data measured at 𝑓𝑠 = 12 kHz; error bars, standard deviation of five measurements. Solid lines, theoretical solutions with 𝜇 = 119 kPa and 𝜁 = 0. (e)–(f) FE
simulations of the wave field (left) and illustrations of different waves (right) in a soft material under (e) stress-free and (f) compressive (𝜀 = −0.45) conditions.
The solid and dashed lines denote the peaks and valleys of the waves. The intersections of two solid or dashed lines correspond to constructive interference,
whereas the intersections of solid and dashed lines correspond to destructive interference. The compressive stress decreases the speed of the Rayleigh surface wave
dramatically, making the SS and Rayleigh surface waves separated in space. Please see the supplementary video for the animation of surface wave propagation.
𝜃𝑆𝑆 denotes the propagation angle of the SS wave in the medium. Scale bars, 2 mm.

is widely used for rubbery materials under modest deformation (0 < 𝜀 < 100%) (Kim et al., 2011; Destrade et al., 2017). It describes
the strain energy function as

𝑊 (𝑭 ) = (𝜇∕2)
[

𝜁
(

𝐼 − 3
)

+ (1 − 𝜁 )
(

𝐼 − 3
)]

. (35)
8
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Here, 𝜇 is shear modulus, 𝜁 is a material-dependent parameter (0 ≤ 𝜁 ≤ 1), 𝐼1 = tr (𝑪), and 𝐼2 =
[

𝐼21 − tr (𝑪2)
]

∕2, where 𝑪 = tr (𝑭 T𝑭 ).
ith the strain energy function, the relation between the stress and strain can be derived. For small strain we get

𝑁11 ≈ 3𝜇𝜀[1 − (2 − 𝜁 )𝜀]. (36)

he instantaneous moduli defined in Eq. (26) are 𝛼 = 𝜇[𝜁 (1 + 𝜀)2 + (1− 𝜁 )(1 + 𝜀)], 𝛾 = 𝜇[𝜁∕(1+ 𝜀) + (1− 𝜁 )∕(1 + 𝜀)2], and 𝛽 = (𝛼 + 𝛾)∕2.
Then we can get the speeds for the R and SS waves by solving Eq. (34). For small 𝜀 we obtain the following results:

𝑐𝑅 ≈ 0.955𝑐𝑇 0
[

1 + (0.5𝜁 + 0.644)𝜀 + (−0.125𝜁2 + 0.322𝜁 − 0.351)𝜀2
]

,

𝑐𝑆𝑆 ≈ 2.13𝑐𝑇 0
[

1 + (0.5𝜁 − 0.752)𝜀 + (−0.125𝜁2 − 0.376𝜁 + 1.03)𝜀2
]

,
(37)

where 𝑐𝑇 0 =
√

𝜇∕𝜌. For the SS wave, please note  has a nonzero imagery part, 0.567𝑐𝑇 0[1+(0.5𝜁−1.36)𝜀+(−0.125𝜁2−0.679𝜁+1.17)𝜀2],
hich characterizes the attenuation along the propagation direction. Note that the coefficient of the linear 𝜀 term for the SS wave

s always negative for 𝜁 = [0, 1].
Using a custom-built mechanical setup (Fig. 5(a)), we applied different magnitudes of prestress to the sample and measured the

urface waves. Fig. 5(b)–(d) shows the experimental results for a range of 𝜀 from −0.2 to 0.2. The R wave velocity increases with 𝜀
s expected. Interestingly, we find that the SS wave velocity decreases with the strain, the opposite behavior. The best fit to Eq. (37)
as obtained with 𝜁 ≈ 0. Then the ratio of 𝑐𝑆𝑆∕𝑐𝑅 ≈ 2.23 − 3.26𝜀 + 5.31𝜀2 according to Eq. (37), uniquely related to 𝜀.

To understand the negative sensitivity of 𝑐𝑆𝑆 to 𝜀, we performed finite element (FE) simulations (Abaqus/standard 6.13, Dassault
ystèmes Simulia Corp.). A square domain 40 × 40 mm2 was built. We checked the height of the model was large enough to avoid
ave reflections at the bottom. The left side of the domain was a symmetric boundary and the bottom was completely fixed. In

he study of prestress, we used the built-in Mooney–Rivlin model as the material model (𝜇 = 25 kPa, 𝜁 = 1, and 𝜌 = 103 kg∕m3,).
compression along the horizontal direction was applied on right side of the domain in a static analysis step. In the subsequent

nalysis we used an implicit dynamic analysis step and applied a time-harmonic, local pressure (0.3 mm) to the surface to excite
lastic waves. The wave speed is independent from the frequency because the material is purely elastic. In the simulation the stimulus
requency was 5 kHz. We adopted a gradient mesh (∼ 0.025 mm to ∼ 0.5 mm from top to bottom of the domain) and the CPE8RH
lement type (8-node biquadratic, reduced integration, hybrid with linear pressure). Convergence of the simulation was confirmed
ecause further reduce the size of the elements did not change the results.

Fig. 5(e) illustrates wave motion in the 𝑥1 − 𝑥3 plane in the stress-free configuration. Three distinct waves from the excitation
oint are seen: the R wave with phase planes normal to the surface, the SS wave with phase planes tilt at a angle 𝜃𝑆𝑆 , and a spherical
hear wave. The SS wave is a leaky surface wave, whose energy is radiated into the medium in the form of a planar shear wave.
his shear wave has a speed of 𝑐𝑇 0. The leaky angle 𝜃𝑆𝑆 satisfies Snell’s law (Auld, 1973): 𝑐𝑆𝑆 cos(𝜃𝑆𝑆 ) = 𝑐𝑇 0, from which 𝜃𝑆𝑆 = 62◦.
he SS wave can be viewed as a shear wave created at the surface and propagating with the steep angle into the medium. Now,
e have a qualitative explanation for the negative dependence of 𝑐𝑆𝑆 on 𝜀. As the medium is stretched in 𝑥1, it is compressed in
3 by the Poisson effect. This compression decreases shear wave speeds along 𝑥3, just like compression in 𝑥1 decreases wave speeds
long 𝑥1. Since the propagation direction of the SS wave is more vertical than horizontal, the effect of prestress on 𝑐𝑆𝑆 is opposite
o that of 𝑐𝑅.

Fig. 5(f) shows the FE simulation at 𝜀 = −0.45. Under uniaxial prestress, the angle-dependence of the shear wave speed can be
erived by taking

𝜒 = 𝜒̄𝑒𝑖𝑘(𝑐𝑇 𝑡−𝑥1 cos 𝜃−𝑥3 sin 𝜃), (38)

or the stream function, where 𝜃 denotes the angle between the wave propagation direction and 𝑥1 axis. Substitution of Eq. (38)
nto Eq. (25) leads to

𝑐𝑇 =
√

(𝛼 cos4 𝜃 + 2𝛽 sin2 𝜃 cos2 𝜃 + 𝛾 sin4 𝜃)∕𝜌. (39)

With Eq. (39) and the Snell’s law 𝑐𝑆𝑆 = 𝑐𝑇 (𝜃𝑆𝑆 ) / cos(𝜃𝑆𝑆 ), we find the variation of 𝜃𝑆𝑆 is < 1.4◦ over −0.5 ≤ 𝜀 ≤ 0.5, as shown in
ig. 6. Therefore, 𝑐𝑆𝑆 ≈ 2.13 𝑐𝑇 (𝜃 = 62◦, 𝜀). Whereas 𝑐𝑅 ≈ 0.955𝑐𝑇 (𝜃 = 0◦, 𝜀).

. Supershear surface waves in anisotropic materials

From the angular interpretation discussed above, we expect 𝑐𝑆𝑆 to be sensitive to material anisotropy, which results from the
irection dependence for the shear wave speed. Consider the plane-strain state (𝜀22 = 0) of an incompressible, stress-free linear
rthotropic material, of which the material symmetric axes are aligned with the coordinate system shown in Fig. 1(a). The Hooke’s
aw that links the stress and strain is

𝜎11 = −𝑝̄ + 𝐶11𝜀11 + 𝐶13𝜀33, 𝜎33 = −𝑝̄ + 𝐶13𝜀11 + 𝐶33𝜀33, 𝜎13 = 𝐶55𝜀13, (40)

where 𝐶11, 𝐶33, 𝐶13, and 𝐶55 are components of the orthotropic stiffness matrix (Auld, 1973). 𝑝̄ is the Lagrange multiplier for
incompressibility constraint. According to the third equation we can get the in-plane shear modulus 𝜇13 ∶= 𝜎13∕𝜀13 = 𝐶55. Because
of the incompressibility we have 𝜀33 = −𝜀11. Subtracting the second equation from the first equation and taking 𝜎33 = 0 we get
𝜎11 = (𝐶11+𝐶33−2𝐶13)𝜀11 and thus the plane strain Young’s modulus 𝐸∗

1 ∶= 𝜎11∕𝜀11 = (𝐶11+𝐶33−2𝐶13). We introduce an anisotropy
̄ ∗
9

index 𝐴 = 𝐸1∕𝜇13 − 4, which reduces to 0 when the material is isotropic.
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Fig. 6. Effect of prestress on the leaky angle.

Fig. 7. (a) Normalized phase velocity in an anisotropic material. Solid line, 𝐴̄ = 4, dashed line: 𝐴̄ = −2. (b) The dependence of surface wave speeds on material
anisotropy. (c) Variation of the leaky angle 𝜃𝑆𝑆 with the material anisotropy.

The surface wave speeds and 𝑐𝑇 are given by Eqs. (13) and (39) respectively with 𝛼 = 𝛾 = 𝐶55 and 2𝛽 = 𝐶11 +𝐶33 − 2𝐶13 − 2𝐶55.
The shear wave is isotropic with a speed 𝑐𝑇 0 =

√

𝜇13∕𝜌 when 𝐴̄ = 0 but in general is angle dependent, as shown in Fig. 7(a). While
he shear wave speed for 𝜃 = 0 remains unchanged, the speeds of the oblique shear waves are sensitive to 𝐴̄, leading to a much

stronger dependence on 𝐴̄ for the SS wave speed than the R wave speed (see Fig. 7(b)). The FE simulations (𝜇13 = 25 kPa, 𝜇23 = 9 kPa
nd 𝐸∗

1 varies from 25 kPa to 250 kPa) agree well with the theoretical curves. The leaky angle 𝜃𝑆𝑆 has a weak dependence on 𝐴̄, as
hown in Fig. 7(c).

. Conclusion

In conclusion, we have reported on the properties of the supershear surface wave in soft materials. We provided theoretical and
xperimental descriptions of the effects of viscoelasticity, prestress and anisotropy of the material on the velocity of the supershear
ave. The specific properties of the supershear surface wave are quite distinct from those of the Rayleigh surface waves. The
ifference gives us an opportunity to use the two wave modes to characterize the material anisotropy or mechanical stress (Li
t al., 2020) of bulk materials from measurements at their free surface. One possible application is to characterize soft biological
issues using the two surface waves with OCT elastography (Ramier et al., 2020). The destructive interference of the supershear and
ayleigh surface waves in the near field may be applied to trap and manipulate particle across length scales (Baudoin et al., 2020).
inally, our findings may be useful in the investigations of supershear dynamics of solids, such as ultra-fast dynamic ruptures, where
he stress concentration gives rise to the hyperelastic stiffening.
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