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Abstract
The identification of individual cells is crucial for advancements in single-cell analysis. Optically readable barcodes
provide a means to distinguish and track cells through repeated, non-destructive measurements. Traditional
fluorophore-based methods are limited by the finite number of unique barcodes they can produce. Laser particles
(LPs), which emit narrowband peaks over a wide spectral range, have emerged as a promising technology for single-
cell barcoding. Here, we demonstrate the use of multiple LPs to generate combinatorial barcodes, enabling the
identification of a vast number of live cells. We introduce a theoretical framework for estimating the number of LPs
required for unique barcodes and the expected identification error rate. Additionally, we present an improved LP-
tagging method that is highly effective across a variety of cell types and evaluate its biocompatibility. Our
experimental results show successful barcoding of several million cells, closely matching our theoretical predictions.
This research marks a significant step forward in the scalability of LP technology for single-cell tracking and analysis.

Introduction
Single-cell analysis has established itself as a vital

technique in life sciences and clinical medicine1,2. It goes
beyond the limitations of conventional ensemble analysis
of cell populations, allowing for the detailed investigation
of individual cells3. Fluorescence microscopy permits the
imaging of individual cells for complex functional4–6 and
molecular7–9 assays. Flow cytometry and microfluidic
analyses acquire cell samples with high throughput in a
fluidic stream, sequentially identifying the phenotypes of
individual cells10,11. Moreover, a variety of single-cell
omics approaches, including droplet-based sequen-
cing12,13 and spatial capture methods14–17, have been
developed in recent years, allowing a more comprehensive
understanding of cells’ molecular profiles.
In an ideal experimental workflow, one would simulta-

neously profile as many aspects of each individual cell as
possible, including their lineage, dynamic molecular

states, spatial positions, and interactions with the micro-
environment1. Optical cell barcoding enhances this cap-
ability by marking each cell with unique, optically
readable identifiers18, facilitating their easy recognition
and examination via microscopes, flow cytometers,
sequencers, and other optical instruments. This technique
employs distinct, optically detectable labels to tag cells,
akin to the use of Universal Product Codes for mer-
chandise or name tags for individuals. The optical readout
offers significant benefits, including real-time, non-con-
tact, non-destructive, and repeatable cell identification.
Importantly, optical barcoding enables the remote track-
ing of live cells in vivo and supports comprehensive cross-
platform analyses. For instance, cells tagged and observed
through time-lapse microscopy can subsequently be iso-
lated and analyzed using flow cytometry or single cell
sequencing11,18. The data acquired from these platforms
can then be linked back to individual cells based on their
unique barcodes, enabling holistic, multi-dimensional
single-cell analysis.
While fluorescence barcoding has found application in

labeling capture beads for multiplexed bead assays19,20, its
extension to single-cell identification has been limited.
The wide emission spectra of fluorophores and quantum
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dots constrain the number of unique tags to a few hun-
dred at most21,22. Other approaches such as Raman
multiplexed probes23 face the same limitations. Given that
typical single-cell analyses necessitate between 104 and
105 barcodes per sample and even upwards of 106 for rare
cell types, the limitation in number of unique tags poses a
bottleneck. Additionally, fluorophores play a crucial role
in a broad spectrum of biological analyses, encompassing
imaging, flow cytometry, and sequencing24. Therefore,
there is an unmet need for a barcoding technology that
can accommodate a larger number of cells and is com-
patible with existing fluorescence-based methods.
In the past decade, an innovative optical barcoding

strategy utilizing narrowband-emission Laser Particles
(LPs) has been developed25–28. Single-mode LPs exploit
cavity-enhanced stimulated emission to produce sub-
nanometer linewidths, substantially narrower than the
emission bandwidths of traditional fluorophores. We have
shown that semiconductor-based microdisk LPs can emit
in a narrow band (< 0.4 nm) across the 1150–1650 nm
spectrum25,29. With a binning of 1 nm, they provide 500
distinct colors. This technology enabled us to track
thousands of cancer cells within a tumor spheroid
model25. Despite this breakthrough, the available palette
size is still not adequate for the unique barcoding of cells
in many single-cell biology applications.
Using a combinatorial barcoding strategy can sig-

nificantly extend the number of available barcodes beyond
the limitations of this finite palette size. This method
involves labeling each cell with several LPs, each char-
acterized by distinct laser-emission peaks. The total
number of unique barcodes can be estimated by the
combination formula, Cðl;mÞ, wherelis the number of
distinguishable laser colors, and m is the number of LPs
per cell. Withltypically on the order of a few hundreds,
modest values of m= 3, 4 are enough to satisfy the
uniqueness requirements in most relevant applications.
This approach has been successfully applied to tag and
analyze 105 to 106 human peripheral blood mononuclear
cells using multi-pass flow cytometry11. Unlike combina-
torial methods that rely on different fluorophore intensity
levels21,30, LP barcoding benefits from its purely spectral
encoding with enhanced robustness against variability in
tagging concentrations and signal attenuation.
In this study, we undertake both theoretical and

experimental analyses of this combinatorial LP-barcoding
strategy. Our work encompasses the development of a
theoretical framework to estimate the error rate asso-
ciated with duplicate barcodes and noise in spectral
reading, which is contingent upon specific experimental
conditions, such as the number of LPs per cell and total
number of analyzed cells. We further analyze the effi-
ciency of advanced tagging protocols designed to enhance
the efficiency of labeling cells with multiple LPs, validating

their efficacy across both adherent and suspension cell
types. Our methodology is rigorously tested by measuring
the optical barcodes of extensive cohort of cells, exceeding
1 million, under realistic experimental conditions. More-
over, we assess the biological effects of LP tagging on cell
division and gene expression for cancer cells, demon-
strating the potential of this technology for broad appli-
cations in cellular biology and medical diagnostics. This
work lays the foundation for the widespread use of LP
barcoding in multidimensional live-cell analysis of mas-
sive numbers of cells.

Results
Combinatorial barcoding with discrete spectral elements
Combinatorial barcoding involves physically associating

a set of LPs with a cell. LPs can either be internalized into
the cytoplasm or attached to the cell membrane’s exterior,
depending on the LP’s size, surface properties, cell types
and their states. We assume that all LPs operate on a
single laser mode, meaning the barcode’s multiplicity
corresponds to the number of LPs associated with a cell,
denoted by m. The implications of dual-mode lasing will
be addressed subsequently. The multiplicity, m, may differ
among cells. Our analysis focuses on barcoding with
specific values of m from 1 to 5. These findings will later
be extended to scenarios involving groups of cells tagged
with varying m values, such as through stochastic tagging.
Figure 1a illustrates a cell tagged with three LPs. With

optical pumping above the lasing threshold, each LP emits
a characteristic narrowband emission spectrum. Together,
these peak wavelengths form the cell’s optical barcode.
Considering that spectral linewidths and measurement
noise are relatively constant in frequency rather than
wavelength, we convert wavelength to photon energy (E)
for convenience. Since the order of the emission lines
cannot be differentiated, each barcode is represented as a
sorted list of energies, E ¼ ðE1; ¼ EmÞ, where Ej > Ei for
all j > i. Consider the scenario that the possible laser
spectral lines are discrete, and there are l possible levels
(colors or spectral bins). This setup is shown in Fig. 1b,
where the total spectral range is Δ, emission energies are
separated by a gap of 2δ, and l ¼ Δ=2δ. The total count of
unique barcodes, B, is determined by the binomial coef-
ficient Cðl;mÞ. This calculation is depicted in Fig. 1c
across a variety of l and m values. Since l � m,

B � lm

m!
¼ 1

m!

Δ

2δ

� �m

When LPs are randomly allocated to cells, the total
count of unique barcodes, B, doesn’t equate to the total
number of cells that can be uniquely identified because a
specific barcode might be assigned more than once. With
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the assumption that all energy levels have an equal
probability of occurrence, for a given pool size N (repre-
senting the number of tagged cells), the probability of
barcode duplication, εdup, can be calculated as follows:

εdup ¼ 1� 1� 1
B

� �N�1

� m!

lm
N ð1Þ

where B � N has been used for the approximation.
Figure 1d shows the duplicate rate as a function of the
pool size, with l= 100. This result is valuable for
experiment planning, particularly when aiming to keep
the duplicate rates below a certain threshold. According
to Eq. (1), to tag N= 104 cells while maintaining a
duplicate rate below 1%, a minimum of B= 106 unique
barcodes is necessary. Figure 1e outlines this requirement
as a function of l, providing a practical guideline to
achieve desired levels of barcode uniqueness.

Combinatorial barcoding with continuous spectral
elements
In this section, we explore the scenario where the

photon energies of LPs span a continuous spectrum
rather than discrete levels. Building on the discrete model,
we employ a probability density function, g Eð Þ, to describe
the distribution of LP emission peaks, where

R
g Eð ÞdE ¼

1. We examine two distinct probability functions: the
uniform distribution, which models LPs created from the
various semiconductor blends, and the Gaussian dis-
tribution, representing the typical distribution from a
single semiconductor type25,29,31. To compare the spectral
ranges, we introduce a width parameter Δ (as depicted in
Fig. 2a). In the uniform case, Δ spans the entire spectral
range (matching Δ from Fig. 1b). For the Gaussian dis-
tribution, we define Δ ¼ ffiffiffiffiffi

12
p

σ, with σ the standard
deviation. This ensures that both distributions have the
same standard deviation, facilitating a comparison. When
selecting m LPs from a common pool, their combined

probability distribution, Gm Eð Þ, is defined as

Gm E1; ¼ ; Emð Þ ¼ m!
Ym

i¼1
gðEiÞ

For every barcode measurement there may be slight
variations in the energy lines due to experimental condi-
tions or noises such as optical and electrical fluctuations,
temperature differences, or spectrometer miscalibrations.
These variations, collectively referred to as ‘noise’, are
depicted in Fig. 2b. Therefore, it is necessary to employ a
metric to evaluate the similarity between pairs of mea-
sured barcodes. Although this issue exists in discrete-level
barcoding, choosing a sufficiently large gap 2δ can miti-
gate the effect of noise. To address noise in the con-
tinuous energy spectrum, we conceptualize an m-
dimensional energy space, with each measurement
represented as a point within this space. We set a
threshold δ: two measurements EA and EB are considered
identical if their distance in this space is less than δ,
assuming both have the same multiplicity m. Measure-
ments of different m values are presumed to originate
from distinct barcodes, although real measurements
might not always reflect this due to non-idealities in the
barcode reading process. We adopt the Chebyshev metric
to define the distance between EA and EB as
max

i¼1;¼ ;m
EA;i � EB;i

�� ��. This metric designates a (hyper)cube

of side length 2δ around each barcode in the m-dimen-
sional space. The formula for the duplicate rate is as
follows (see Supplementary Note A):

εdup ¼ 1�
Z

Gm Eð Þ 1� 2δð ÞmGm Eð Þð ÞN�1dE ð2Þ

For the uniform distribution, the duplicate rate simplifies

to εdup !
uniform

1� 1� 1
Beff

� �N�1
, where Beff ¼ 1

m!
Δ
2δ

� 	m
. This

equation mirrors Eq. 1, except here B is substituted with
Beff , representing the effective number of unique barcodes
in the continuous case. This effective count is given by the
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Fig. 1 Combinatorial barcodes based on discrete energy levels. a Illustration of a cell tagged with three spectrally distinct LPs (circles).
b Schematic of the barcoding strategy utilizing discrete energy levels. c Total number of unique barcodes, given by � lm=m!. d Barcode duplicate
rates across varying pool sizes (number of cells) for l= 100. e Maximum possible pool size achievable with a duplicate rate of 1%

Martino et al. Light: Science & Applications          (2025) 14:148 Page 3 of 17



ratio of the total barcode space to the volume occupied by a
single barcode. For the Gaussian distribution, εdup can be
calculated by numerical integration. The estimated dupli-
cate rates for a spectral width Δ ¼ 100meV and a threshold
δ ¼ 0.5meV are depicted in Fig. 2c for both uniform and
Gaussian distributions, respectively, and in Fig. 2d for dif-
ferent values of δ. To validate Eq. 2, computer simulations
were performed, randomly selecting N samples from the
defined distribution Gm Eð Þ and tallying duplicates using
the Chebyshev metric. The simulation outcomes align
closely with the theoretical prediction (Fig. 2c). Notably at
low duplicate rates (less than 10%), the discrepancies
between the uniform and Gaussian cases are minimal.

While aiming for a smaller δ is advantageous to reduce
duplicate rates, it increases the likelihood of error in
barcode identification due to measurement noise. The
probability function φðE0Þ denotes the likelihood of a
measurement yielding a fluctuation of E0 with respect to a
mean value. For normal distribution noise with standard

deviation σφ;φ E0ð Þ ¼ 1
σφ

ffiffiffiffi
2π

p expð� E02
2σ2φ

Þ. The probability

that two measurements of the same barcode are separated
by more than 2δ, leading to a mismatch, is expressed as
(see Supplementary Note B):

εnoise ¼ 1�
Z δ

�δ
φ E0ð ÞdE0

� �m
ð3Þ

The noise-induced error εnoise is illustrated in Fig. 2e for
different σφ values. An optimal δ can be determined,
which balances the trade-off between maximizing the
count of unique barcodes and minimizing duplication and
noise-induced error. Figure 2f presents the compounded
error rate, εtot, calculated as

εtot ¼ εdup þ εnoise � εdupεnoise;

for a scenario where σφ ¼ 0:1meV. The optimal thresh-
old, δopt , corresponds to the point where the total error
rate εtot is minimized. Below this optimum, noise-induced
errors escalate sharply as δ diverges from δopt . As
anticipated, δopt diminishes as the sample size N
increases. For smaller pools of samples, a larger δ is
preferable to ensure robust identification against noise.
Conversely, a smaller δ becomes more desirable for larger
sample sizes to reduce the likelihood of duplicate
identifications. Figure 2g illustrates the minimum total
error rate, εmin, achieved at δ ¼ δopt , across varying pool
sizes and as a function of the bandwidth Δ.

Estimating the maximum permissible sample size N
(number of cells) that maintains the total error rate, εtot,
below a specific threshold suitable for a particular appli-
cation, ε0, can be highly beneficial. As an example, Fig. 2h
explores this for ε0 ¼1%, demonstrating how the max-
imum N varies with Δ and m, or the necessary m value for
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accommodating a given sample size. In this case, with a
Δ ¼300 meV covering a spectral range of 1150–1600 nm,
utilizing 3 or 4 LPs per cell could effectively barcode
between 104 and 106 cells, providing a scalable solution
for reliable cell tagging across a broad spectrum of
applications.

Combinatorial barcoding with Poisson distribution
multiplicity
In practice, the number of LPs acquired by cells can

vary, leading to different multiplicities within a sample
pool11,25. For a purely stochastic tagging process, the
number of LPs per cell is expected to follow a Poisson
distribution. Figure 3a illustrates an example of this dis-
tribution with an average tagging ratio (λ) of 3 LPs per
cell. Here, the duplicate rate for each multiplicity level is
calculated as previously described, and the total duplicate
rate is obtained by summing these rates, weighted by their
respective proportions. Figure 3b presents results for a
uniform spectral distribution with Δ ¼100meV, high-
lighting contributions from subgroups with varying mul-
tiplicities. Upon measuring the entire sample pool,
duplicates can be detected and excluded from analysis,
thereby treating duplication events as sample loss rather
than a barcoding error. However, mismatches due to
noise are generally indistinguishable and must be
acknowledged as inherent errors. Figure 3c shows εdup
and εnoise across different tagging ratios λ, for N ¼100k.
By identifying duplicates, it is possible to select a δ value
that aligns εnoise with the maximum acceptable error rate
ε0. At this optimal δ, the proportion of duplicate barcodes
(εdup) can be considered as sample loss. Figure 3d depicts
the impact of different tagging ratios on duplicate loss,
indicating that a higher tagging ratio reduces duplication
loss for a specified sample size.

Efficient protocols for stochastic tagging
Our initial approach for tagging cancer cells with LPs

involved co-culturing cells alongside LPs in a dish25 (Fig.

4a). However, this strategy often led to uneven tagging,
leaving many untagged cells even when using high LP-to-
cell ratios (Supplementary Fig. S1). The tendency of LPs
to quickly settle at the dish bottom reduced the oppor-
tunities for cells to interact with LPs, resulting in variable
tagging efficiency depending on cell concentration,
motility, and incubation duration. Additionally, for cells
growing in clusters tagging is typically confined to per-
ipheral cells, with central cells remaining largely untagged.
In our recent work with blood cells11, we have developed

a tagging protocol that involves mixing cells with LPs in a
sample tube (Fig. 4b). This approach ensures a uniformly
high probability for each cell to encounter LPs, achieving
stochastically uniform and improved tagging efficiency.
This technique is particularly effective for tagging immune
cells in blood samples that are maintained in suspension. In
this work, we extended this approach to adherent cells (Fig.
4b, ii). To enhance the binding of LPs to cell membranes
during mixing, we developed two surface-functionalization
strategies for LPs32. The first uses cationic polymers, such
as polyethylenimine (PEI) and polylysine33,34, facilitating
attachment to negatively charged cell membranes through
non-specific electrostatic interactions. The second strategy
relies on antibodies to achieve either cell-type-specific
attachment or broad tagging by targeting ubiquitous sur-
face receptors. This is achieved by tagging cells with bio-
tinylated antibodies and using biotinylated LPs, linking the
two via streptavidin in a similar configuration to standard
“sandwich” assays35. Antibody-functionalized microlasers
have been recently demonstrated for local antigen detec-
tion via refractive-index sensing36.
To test both methods for various cell types, we prepared

LPs from six different InGaAsP compositions25, spanning
a wide spectral range of 800–1100meV (Δ= 300 meV).
The particles’ diameters ranged from 1.6 to 1.8 µm, with
thicknesses varying between 220 and 290 nm. The semi-
conductor particles were encapsulated in a protective
silica layer either 30–50 nm or 100 nm thick before being
functionalized with either PEI or biotin (see Methods).
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PEI-coated LPs are compatible with a broad spectrum of
cell types, as their attachment relies on electrostatic
attraction between the negatively charged plasma mem-
brane of cells and the positively charged polymer bran-
ches37 (Fig. 4c). All adherent cell types investigated tended
to internalize LPs following their attachment to the cell
membrane, typically within a few hours after plating.
Tagging with PEI-LPs was efficient for a variety of
adherent cells, including HeLa, MCF7, and 4T1 cancer
cell lines, L929 fibroblasts, Raw264.7 macrophages, and
mouse cortical neural stem cells (Supplementary Fig. S2).
Confocal 3D microscopy confirmed the internalization
(Supplementary Fig. S3). Figure 4d shows HeLa cells
tagged with a 5:1 LP-to-cell mixing ratio, immediately
after plating on a culture dish (left) and following incu-
bation (right). The majority of cells exhibited multiple LPs
localized within their cytoplasm. Only a few unbound LPs

were visible in the extracellular space. In contrast, bare
silica-coated LPs without PEI failed to attach to the cell
membrane and remained in the culture medium, as
shown in Fig. 4e. Different LP-to-cell mixing ratios
resulted in various average tagging ratios (Fig. 4f and
Supplementary Fig. S4). The distributions of tagged LP
numbers approximately followed Poisson statistics,
although some deviations are observed especially at
higher multiplicities. Similar tagging efficiencies were
obtained for MCF7 cells (Supplementary Fig. S5).
For antibody-mediated tagging, we used LPs functio-

nalized with biotin (see Methods). These LPs were added
to cells pre-coupled to biotinylated antibodies and mixed
with streptavidin (Fig. 4g). Anti-CD3 antibodies were
chosen for T-cell tagging. Figure 4h displays images of
human T-cells tagged with anti-CD3 LPs, revealing LPs
attached to the cell membrane after 24 h of incubation.

Shaker
(	 1 h)

(i) Suspension cells
a b

d

ih k

0 5 10 15
0

10

20

# LPs per cell

P
er

ce
nt

ag
e 

of
 c

el
ls

 [%
]

j

T B

100

0

20

40

60

80

Ta
gg

in
g 

ef
fic

ie
nc

y 
[%

]

Anti-CD3 Anti-CD19

T B

Incubation (overnight)

LPs
(ii) Adherent cells

Internalization
(>2 h)

LPs

�
�

5

15

25

0 5 10 2015

Mix 5:1

0

10

20

0 5 10 2015
0

10

20

# LPs per cell

Mix 12:1

f

5 10 20150

Mix 8:1

0

10

20

P
er

ce
nt

ag
e 

of
 c

el
ls

 [%
]

0 5 10 2015
0

10

20
Mix 3:1

T cells

5 �m
1 2 3 1 2 3

# flow cycles

20

40

60

80

0

T
ag

ge
d 

ce
lls

 [%
]

e

50 �m

Bare LPs

HeLa cellls

after incubation

c

g

antibody

biotin

streptavidin

Cell
membrane

50 �m

Cell
membrane

PEI-LPs

Ab-LPs

PEI-LPs

Ab-LPs

HeLa cellls

T cellls

Cell type

Cells

Fig. 4 Protocols for efficient combinatorial tagging. a Conventional method schematic: LPs are added to a cell culture on a plate. b Revised
method schematic: Cells mixed with LPs in solution, then transferred to (i) a tube for suspension cells or (ii) a culture dish for adherent cells. c PEI-LP
tagging schematic. d Brightfield images of HeLa cells after mixing with PEI-LPs immediately after plating (left) and after 24-h incubation (right).
e Brightfield image of HeLa cells after incubation with bare silica-coated LPs without PEI coating. f Histogram of PEI-LPs per HeLa cell for various initial
mixing ratios (LP-to-cell), measured 24 h post-plating (N= 366, 375, 370, and 471 cells, respectively, from top to bottom). g Antibody-mediated
tagging schematic. h Images of human T cells tagged with anti-CD3 LPs. i A comparison of tagging efficiency and stability between anti-CD3 and PEI
functionalization for T cells, defined as the presence of at least one LP per cell, measured across three consecutive runs through the flow cell of a
commercial flow cytometer. j Histogram of anti-CD3-LPs on T cells for a 5:1 mixing ratio (330,000 cells). k Tagging percentage for T and B cells with
anti-CD3-biotin (left) or anti-CD19-biotin (right), demonstrating selective tagging of CD3+ T cells and CD19+ B cells

Martino et al. Light: Science & Applications          (2025) 14:148 Page 6 of 17



Generally, blood cells resist LP uptake, except for acti-
vated monocytes and macrophages. Despite the LPs
remaining external, the biotin-streptavidin bond ensured
durable tagging, resistant to pipetting and multiple flow
cytometry runs. Figure 4i shows LP retention for T cells
tagged with anti-CD3-LPs and PEI-LPs at an identical LP-
to-cell mixing ratio of 5:1. PEI-LPs exhibited a lower
initial tagging efficiency and a modest yet noticeable
decline in retention across multiple runs through the flow
cell of a commercial hydrodynamic-focusing flow cyt-
ometer (Cytoflex S, Beckman Coulter). In contrast, anti-
CD3-LPs showed higher initial tagging efficiency and
sustained consistent attachment, attributed to the robust
biotin-streptavidin interaction. Figure 4j presents a typical
LP number histogram for a 5:1 LP-to-cell mixing ratio,
indicating a Poisson-like distribution. Their application to
human peripheral blood mononuclear cells (PBMCs) with
anti-CD3 biotin showed that T lymphocytes (CD3+) had
substantially higher tagging efficiency compared to B
lymphocytes (CD19+). Conversely, employing anti-CD19-
biotin preferentially tagged CD19+ B cells over T cells
(Fig. 4k and Supplementary Fig. S6). Mixing these two
antibodies in suitable ratios could achieve uniform tagging
efficiency across both T and B cells. Additionally, the
antibody approach proved effective for other cell types,
such as mouse splenocytes with anti-H-2Kd-biotin with
anti-CD45-biotin, and human leukemia cells (KOPN-8)
with anti-β2M-biotin (Supplementary Fig. S7).

Experimental validation of large-scale combinatorial
barcoding
Optical barcodes can be measured via both LP-reading

(LASE) laser-scanning confocal microscopy25,38 and LASE
flow cytometry11. While supporting conventional
fluorescence-based measurements, each instrument
incorporates a 1064 nm nanosecond pump laser (2-MHz
pulse repetition rate) and a high-resolution spectrometer
using a diffraction grating and a linear InGaAs array
camera (76 or 147 kHz readout rate).
Using the microscope, we captured bright-field images

of LP-tagged HeLa cells, with laser emission profiles from
individual LPs superimposed, and photon energy color-
coded. Figure 5a features six representative cells show-
casing this photon energy barcoding. To characterize the
system’s noise function φ E0ð Þ, we recorded the emission
spectra of LPs over 50min at 45 s intervals, yielding 71
data points per LP. Figure 5b presents a histogram of
these energy fluctuations, averaged across 156 LPs (Sup-
plementary Fig. S8). This histogram was modeled using a
generalized Gaussian distribution function, φ E0ð Þ ¼

β
2αΓð1=βÞ e

� E0j j=αð Þβ , with an effective standard deviation
α= 0.047 meV and an exponent β= 1.28. This model,
capturing the Lorentzian-like tails of the distribution
more accurately than a standard Gaussian function,

allowed us to estimate the noise-induced error rates, εnoise,
for various δ values (Supplementary Fig. S9).
To evaluate the stability of LP barcodes, we recorded

confocal images of HeLa cells every 15min over a 31 h
period. Figure 5c shows the output intensity of a repre-
sentative LP over time (bottom) and the variations in its
spectral peak energy (top). The observed intensity fluc-
tuations arise from changes in the LP’s orientation, where
its whispering gallery (WG) mode emission pre-
dominantly lies in the in-plane direction39. Despite
intensity fluctuations spanning over two orders of mag-
nitude, the spectral energy remained stable within
±0.05 meV. We also analyzed cells containing multiple
LPs to assess the effects of physical interactions between
LPs within the cytoplasm. Figure 5d shows the time-lapse
spectral peak profiles of two LPs within a single cell (top),
alongside the distance between the two LPs measured
from confocal images. Time intervals during which the
two LPs were in contact (distance < 2 µm) are highlighted
as gray bands. Compared to single LPs, the spectral
fluctuations of individual LPs in pairs showed a modest
increase but remained within ±0.07 meV. The 100-nm-
thick silica coating was crucial in maintaining this stability
(Supplementary Fig. S10).
Figure 5e illustrates time-lapse images of a HeLa cell

undergoing division at approximately 14 h. The parent
cell was initially tagged with three LPs with distinct lasing
wavelengths. Following cell division, one LP was inherited
by one daughter cell, while two were distributed to the
other, as indicated in the spectral traces (Fig. 5e, bottom).
Although this data demonstrates the potential for tracking
cell lineage using multiple LPs, it also highlights an
inherent limitation of LP barcodes: dilution upon mitosis.
This process reduces LP multiplicity per cell (Supple-
mentary Fig. 11) and decreases the number of unique
signatures, making long-term tracking of proliferating
cells challenging. Possible solutions to address this lim-
itation will be discussed in Section Combinatorial multi-
plet LPs.
Next, we analyzed the barcodes of two million LP-

tagged T cells using flow cytometry (Fig. 5f). Figure 5g
shows the histogram of LP emission energies, reflecting
the probability density g Eð Þ for our experimental LPs
across over 300meV. This profile, characterized by six
broad envelopes, stems from the six semiconductor
compositions in the LP pool. The WG modes in some LPs
may lead to dual-mode lasing with close thresholds,
producing two distinct energy peaks. To isolate them, we
looked at barcodes with two lines from the dataset. Figure
5h reveals the energy correlation between these two
peaks, identifying specific highly-correlated subsets
(arrow) with spacing ranging from 50 to 70meV, while
the rest of barcodes have random correlation between E1

and E2. The interval aligns with the expected free spectral
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range for diameters of 1.6–1.8 µm. We thus infer that this
subset represents cells tagged with one dual-mode LPs.
We found that 7.1% of cells labeled as m= 2 were tagged
with a single dual-mode LP. This population fraction is
denoted f dm for subsequent reference.
Since dual-mode peaks are correlated, they do not

contribute to barcoding in the same manner as two
independent single-mode LPs. However, dual-mode lines
are not equivalent to a single line, because the correlation
or free-spectral range between the two modes depends on
the resonator size and shape. This property could make a

dual-mode LP slightly more effective than a single-mode
LP, provided the dual modes can be consistently gener-
ated and measured. In practice, however, achieving stable
dual-mode lasing is challenging. This is illustrated in Fig.
5i, which depicts the intensities of dual modes as a
function of pump energy. One mode (M2) is detectable at
lower pump powers, while the other mode (M1) becomes
dominant at higher pump powers. This mode competition
introduces significant variations in the output spectrum,
increasing the risk of barcode misidentification, especially
in single-shot measurements. This issue could be

h

cb f

a

800 1100900 1000

C
ou

nt
s

Energy [meV]

40k

20k

0

10k

50k

30k

	 2M LPs

0 0.1 0.2–0.1–0.2
0

P
ro

b.
 d

en
si

ty

Noise �E [meV]

Data Fit
1

T cells in LASE flow cytometry

800 900 1000 1100

[meV]

Spectrum

Barcode

Cell (i)

Cell (iii)

Cell (ii)

Cell (iv)

20 �m

80
0

90
0

10
00

11
00

E
m

is
si

on
 e

ne
rg

y 
[m

eV
]

HeLa cells in LASE microscopy

800 900 1000 1100meV

1100

1000

800

900

11001000800 900

E1 [meV]

E
2 

[m
eV

]

0

2

4

6

0 100 200
Pump energy [pJ]

O
ut

pu
t [

a.
u.

] M1

M2

900 1100
[meV]

M1 M2

1 �m

j k

–.0.5

0.5

0 6 12 18 24 30

108

107

106

Time [h]

�E
 [m

eV
]

O
ut

pu
t [

a.
u.

]

–0.5

0.5

30

20

10

0
0 6 12 18 24 30

Time [h]

D
is

ta
nc

e 
[�

m
]

987.6

925.6
907.7

0 6 12 18 24 30

Time [h]

[m
eV

]

Parent cell

Daughter #1

Daughter #2

d

e

t = 0 h

t = 15 h
t = 24 h

t = 31 h

10 �m

g i

800 900 1000 1100

[meV]

Cell division

50 150 250

�E
 [m

eV
]

0 0

3x

Fig. 5 Experimental validation of combinatorial barcoding. a Brightfield images showcase six HeLa cells with overlaid laser emissions from LPs,
color-coded by photon energy, where transparency indicates signal intensity per pixel. Below each image, the corresponding optical barcodes are
presented. b The noise probability density function measured from 156 LPs. The green curve represents the best fit to a generalized normal function
(α= 0.047 meV, β= 1.28). c LP emission energy (top) and intensity (bottom) of an LP in a HeLa cell. d The emission energies of two LPs within a HeLa
cell (top) as their distance varies (bottom). Grey shaded areas indicate time intervals when the two LPs are in physical contact. e Tracking a single
HeLa cell from time 0 and its daughter cells after division at 14 h. (Top) Representative brightfield images of the cells and their trajectories (lines).
(Bottom) Spectral peaks measured over 31 h. f Spectra and barcodes of four T cells as recorded by LASE flow cytometry. g Distribution of emission
line energies from LP-tagged T cells. h Correlation plot between pairs of barcode energies, E1 and E2, in the dataset for m= 2. Most barcodes display
random E1 and E2 values, with the exception of a subset represented as diagonal streaks (arrow), indicating strong correlation characteristic of dual-
mode lasing. Inset, zoom-in view of the dashed box region. i Output power of two modes, M1 and M2, from a single LP as a function of pump energy.
j Spatial mapping of a dual-mode LP, achieved by scanning the confocal pump beam focus over the LP. k Individual spectra from the LP in (j) at
various marked locations across its diameter

Martino et al. Light: Science & Applications          (2025) 14:148 Page 8 of 17



mitigated by continuously acquiring output spectra while
scanning a pump beam across LPs, as in confocal
microscopy, or by allowing LPs to flow through a sta-
tionary pump beam, as in flow cytometry. The typical
Gaussian intensity profile of the pump beam enhances the
likelihood of detecting both modes. This is demonstrated
in Fig. 5j, k, where raster-scanning the confocal pump
beam across the LP enables detection of M1, M2 or both
modes, identifying the LP as a dual-mode resonator.
From the T-cell dataset, we identified duplicate bar-

codes within subsets of identical multiplicity. To simulate
varying sample sizes (N), we randomly selected subsets
from the complete dataset for analysis, depicted as circles
in Fig. 6a. For comparison, theoretical duplicate rates
(εdup) were computed using the observed g Eð Þ and Eq. (2).
Initially, we utilized Gm Eð Þ ¼ m!

Qm
i¼1gðEiÞ � Gsm Eð Þ,

assuming all LPs emitted a single mode from the histo-
gram of Fig. 5g. While these calculations, shown as dashed
curves in Fig. 6a, reasonably follow the experimental
outcomes, they consistently underestimated the duplicate
rate by about 60% for εdup less than a few percent. This
discrepancy is linked to the inclusion of dual-mode LPs,
whose correlated emission lines reduce the total number
(B) of distinct barcodes. To account for the impact of
dual-mode LPs, which represent 7.1% (f dm) of the pool,
we adjusted the barcode distribution model:

Gm Eð Þ ¼ 1� f dmð ÞGsm Eð Þ þ fdmGdm Eð Þ

Here, GdmðE) denotes the probability distribution for
dual-mode LPs, derived from the identified correlation
subset in Fig. 5h. We assumed that the number of
barcodes containing multiple dual-mode LPs was negli-
gible at low multiplicities given that f dm � 1. Incorporat-
ing this adjusted model into Eq. 2 yielded a close match
between theoretical predictions and experimental findings
(Fig. 6a). Using the framework from Section Combinator-
ial barcoding with continuous spectral elements with
experimentally derived duplicate rates and noise, we
calculated the minimum total error rates (εmin) achievable,

as shown in Fig. 6b, and determined the optimal binning
threshold (δopt) (Supplementary Fig. S12). Lastly, applying
the experimentally measured tagging distribution of HeLa
cells (Fig. 4f), we evaluated duplicate-induced losses, with
results for error tolerances (ε0) of 0.1% and 1% shown in
Fig. 6c. For a 12:1 mix ratio (λ � 6), we could limit
duplicate-induced cell loss to less than 20% for pool sizes
up to 100M.
To assess the robustness of our combinatorial barcod-

ing strategy in accurately identifying cells across different
measurements, we performed a matching experiment
using HeLa cells stained with a cytoplasmic fluorescent
dye (CellTracker Green) and tagged with PEI-LPs at a 5:1
mixing ratio. Of 187,000 cells analyzed, approximately
118,000 cells (63%) were found to contain three or more
LPs (3+ LPs). As illustrated in Fig. 7a, both the fluores-
cence intensity and laser spectra of the cells were mea-
sured in a first run (C1) using the LASE flow cytometer.
The sample was then centrifuged, resuspended in fresh
buffer and measured again in a second run (C2) using the
same instrument. The C2 measurement identified 107,000
cells with 3+ LPs, reflecting a 10% cell loss during col-
lection and centrifugation. Barcode matching between C1
and C2 datasets was performed based on their measured
spectral peaks. While the theorical framework discussed
in earlier sections considered matches only between
identical multiplicities, our analysis allowed for matches
between barcodes with different numbers of lines to
account for practical deviations (see Methods). The
measured energy noise (Fig. 7b) was characterized by
α= 0.25 meV and β= 1.37, higher than previously
reported values (Fig. 5b). The difference is attributed to
different optical configurations of the instruments and the
fact that the confocal microscope collects multiple spectra
per LP, enabling more precise estimation of the central
emission line, whereas high-speed flow cytometry records
only a single spectrum per cell.
Despite this, the analysis successfully matched 99,900

cells (93.3%) between C1 and C2. Figure 7c presents a
histogram of barcode multiplicities for the matched cells.
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Most matches occurred between barcodes of identical
multiplicities, but some off-diagonal matches were
observed, which are relatively symmetrically distributed.
These discrepancies are attributed incomplete barcode
detection during individual measurements. To further
validate matching accuracy, the fluorescence intensities of
the cytoplasmic dye were compared for each matched cell
pair. As shown in the scatter plot in Fig. 7d, a strong
correlation between the fluorescence intensities confirms
the high fidelity of barcode detection and matching across
repeated measurements.

Combinatorial multiplet LPs
We explored the concept of multiplet LPs, which are

clusters of LPs physically bound together25 functioning as

a single tagging unit. For instance, a 3-plet consists of
three LPs that collectively serve as a unified barcode. By
ensuring a minimum barcode multiplicity, multiplets
reduce the occurrence of duplicate barcodes and improve
the reliability of cell identification, even in large popula-
tions. Since their individual LPs (singlets) are bound
together, multiplets do not separate during cell division,
allowing to preserve combinatorial barcodes over suc-
cessive cell divisions. This expected benefit is illustrated in
Fig. 8a.
Using a revised theoretical framework, we conducted

computer simulations comparing cells tagged with sing-
lets and multiplets composed of 2-, 3-, and 4-plets. All
cases assumed an identical initial average number of LPs
per cell (λ= 6) (Fig. 8b). The parameters simulated typical
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experimental conditions, including the stochastic dis-
tribution of LPs among daughter cells during division.
The results, shown in Fig. 8c, illustrate the number of
uniquely tagged cells (for an error tolerance ε0 of 1%) in
samples with initial cell populations (N) ranging from 1000
to 1 million as they undergo multiple cycles of cell division.
The findings highlight a clear advantage for multiplet tag-
ging in maintaining a stable population of identifiable cells
over successive divisions. Singlet-tagged cells exhibited a
rapid decline in unique identifiers as divisions progressed.
In contrast, 2-plets outperformed singlets and were suitable
for small populations (N= 1k), while 3-plets and 4-plets
were strongly preferable for larger populations, maintain-
ing a steady number of identifiable cells. Interestingly, the
simulations showed an initial increase in identifiable cells as
divisions progressed. This phenomenon occurs when cells
initially tagged with multiple multiplets produce daughter
cells with distinct barcodes due to the particles’ distribution
between progeny. Overall, these theoretical results suggest
that multiplet-based tagging offers a robust and scalable
strategy for maintaining unique cell identifiers over time,
particularly in proliferative cell populations.

Biocompatibility of LP tagging
Given the necessity of utilizing multiple LPs for large-

scale combinatorial barcoding, we evaluated the potential
cytotoxicity associated with our barcoding methods. Our

approach is chemically and geometrically similar to
magnetic beads widely used for cell separation40. Our
previous study11 has shown minimal impact of antibody-
coated LP tagging on viability and expression of surface
markers in PBMCs. In this research, we focused on
assessing the effects of PEI-LPs on viability, cell cycle
progressions, and gene expression in HeLa cells. The
viability of tagged versus untagged HeLa cells was mea-
sured using a Cell Counting Kit-8 (CCK-8) assay. After
24 h of incubation, no significant differences in cell via-
bility were observed for initial LP-to-cell mixing ratios of
up to 24:1 (Fig. 9a). Tagging at a 15:1 ratio did not impact
cell viability over 4 days in culture (Fig. 9b). Similar results
were obtained for fibroblast L929 cells (Supplementary
Fig. S13). Cell cycle progression, a critical aspect of cell
physiology, can indicate cytotoxicity if disrupted. To
explore potential impacts, we synchronized HeLa cells
using a double thymidine block41, effectively halting the
cell cycle at the G1/S boundary (Fig. 9c). Upon thymidine
removal, the cell cycle resumed, advancing through the S
and G2/M phases. We monitored the cell phase dis-
tribution every 2 h for 24 h post-thymidine release, using
DNA fluorescence staining to determine cell cycle phases.
Tagged and untagged cell samples exhibited nearly iden-
tical progression patterns (Fig. 9d), with S phase peaks at
6 h G2/M phase peaks at 12 h. This result demonstrates
the minimal effect of LP tagging on cell cycle dynamics.
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We further investigated gene expression changes 24 h
post-tagging via bulk mRNA sequencing, comparing
tagged HeLa cells against untagged controls. Volcano
plots for groups prepared with three different mixing
ratios—5:1 (λ ≈ 3), 10:1 (λ ≈ 5), and 20:1 (λ ≈ 7–8)—are
presented in Fig. 9e–g. Among a total analysis of about
15,000 genes, differential expression analysis showed 15
genes were downregulated (blue dots) and 4 genes upre-
gulated (red dots) for the 5:1 ratio. These numbers
increased to 87 downregulated and 32 upregulated genes
for the 10:1 samples and to 157 downregulated and 56
upregulated genes for the 20:1 samples, indicating a dose-
dependent effect on gene expression. A complete list of
the differentially expressed genes can be found in the
Supplementary Tables 1–3. The data indicates that, while
low concentrations have minimal effects, increasing LPs
tagging may lead to subtle changes on cells transcriptomic
profiles. Compared to a previous study involving GaAs
microparticles of similar sizes42, the number of differen-
tially expressed genes is more than an order of magnitude
lower in our case, suggesting that the protective silica
coating helps reducing the cytotoxicity effects due to
leaking of heavy metal ions from the active semiconductor
material.

Discussion
In our study, we have described a combinatorial method

for generating optically readable barcodes to identify cells,
tagging them with multiple LPs that emit unique sub-
nanometer emission lines. Traditional barcoding techni-
ques typically depend on discrete elements, such as A, C,
G, and T bases in DNA barcoding43, or categorize signals
into discrete levels, like in fluorescence-barcoded multi-
plexed beads19. Although it is possible to produce LPs
with discrete emission lines25,44, for example, by e-beam
lithography, large-scale production with current fabrica-
tion methods poses challenges. The LPs in this study
feature continuously varying diameters, creating a spec-
trum of continuous emission energies over 300meV.
Barcodes are identified by calculating the distance
between barcode measurements, with a theoretical fra-
mework developed to find the optimal threshold distance
(δ) for barcode matching taking experimental noise into
consideration. This allows to determine the minimal error
rate achievable for tagging a specific number of cells with
defined multiplicity. This adaptable model accommodates
LPs across different spectral regions, including cases
where barcode lines exhibit correlations, like dual-mode
LPs. Validation against experimentally measured dupli-
cate rates (Fig. 6a) demonstrates its accuracy for multi-
plicities up to four, even when dual-mode LPs are
considered. The model facilitates extrapolation to larger
cell numbers or higher multiplicities, scenarios that are
impractical to verify experimentally due to the vast

number of cells required. Moreover, it allows for realistic
modeling of cell pools with stochastic multiplicity dis-
tributions, reflecting the natural variability of the tagging
process.
The framework offers a valuable tool for optimizing

tagging parameters to meet specific experimental goals.
For example, our findings indicate that with a total error
rate below 1%, up to 260,000 cells can be distinctly tagged
with three LPs per cell, while up to 40 million cells can be
tagged with four LPs per cell (Fig. 6b). More stringent
requirements, such as those for rare-cell detection in
which even minimal duplication compromises data
integrity, can also be accommodated. The current
approach identifies barcode matches using a defined
threshold for pairwise line distances. Future improve-
ments could incorporate advanced algorithms, introdu-
cing confidence metrics to assign probabilities to matches
based on actual inter-line distances. Addressing mea-
surement discrepancies, such as those arising from vary-
ing number of detected lines, will further enhance
accuracy and reliability for high-precision applications.
Long-term experiments require stable spectral bar-

codes, but environmental factors such as semiconductor
degradation, oxidation, temperature changes, particle-
particle interactions, and variations in the local refractive
index can cause undesirable spectral shifts. Protective
silica coatings of sufficient thickness, combined with
temperature-effect calibration, mitigate these influences.
Residual environmental effects can be integrated into the
theoretical framework as noise contributions for realistic
modeling. Enhancing LPs with omnidirectional emis-
sion39 will improve detection robustness, further stabi-
lizing LP performance.
PEI-LPs, which utilizes electrostatic interactions with

negatively charged cell membranes, demonstrated high
tagging efficacy for adherent cells. For HeLa cells, mixing
ratios of 5–8 LPs per cell effectively tagged the majority of
cells with at least three LPs. In contrast, antibody-coated
LPs were better suited for blood cells, such as lympho-
cytes, which resist internalization and depend on strong
membrane binding. While antibody-mediated tagging
offers high flexibility, applications requiring uniform tag-
ging efficiency across heterogeneous cell populations,
such as immune activation studies, may be biased by
differential efficiencies. Optimization of antibody mixes
and normalization during data analysis are essential for
reliable conclusions.
The stochastic nature of LP tagging inherently leads to

under-tagged cells, typically resulting in duplicate bar-
codes. While these duplicates can be excluded to maintain
low error rates, this often necessitates discarding a sig-
nificant proportion of cells (Fig. 6c). LP tagging also faces
challenges in long-term studies, where extracellular
uptake, LP loss, intercellular exchange, and division-
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induced dilution compromise barcode integrity. Minia-
turization of LPs45 and increasing the tagging ratio46

partially mitigate these issues but do not eliminate
variability in multiplicities or the dilution of barcodes
during cell proliferation. Furthermore, applications like
imaging require accurate identification of cell boundaries,
a task complicated in 3D tissues by scattering and optical
complexity. For these applications, multiplet LPs address
many limitations of singlets, offering stable and unique
barcodes across successive cell divisions. Multiplets
minimize duplication errors and obviate the need for
precise cell contour delineation, making them ideal for 3D
imaging. Simulations demonstrate that 3-plets and 4-plets
maintain a stable population of uniquely identifiable cells
over time, even in large cell populations exceeding 1
million cells.
The ability to uniquely tag and identify individual cells

optically on large scales opens new avenues for multi-
dimensional single-cell analyses18, fostering a deeper
understanding of individual cell states and behaviors.
Beyond cell tagging, the combinatorial barcoding tech-
nology based on LPs has broader applications, enabling
the tagging of microbeads for assays19,20 and screening
merchandise with unique identifiers for tracking and anti-
counterfeiting47.

Materials and methods
Laser particle fabrication
Laser Particles (LPs) were fabricated using an optical

lithography method. Epitaxial structures of InGaAsP
active layers grown on InP substrates were purchased
from Seen Semiconductors Ltd. A typical wafer structure
consists of 6 active InGaAsP layers with emission between
0.825 and 1.075 eV (equally spaced by 50meV) and
thicknesses between 292 nm and 223 nm. The active lay-
ers are separated by InP sacrificial layers of 340 nm, and
capped by a protective InP layer of 500 nm. The wafers
were coated with a 2 μm thick layer of SU8-2002 (Kayaku
AM), followed by a pre-exposure bake (1 min at 65 °C,
2 min at 90 °C, 1 min at 65 °C). The wafers were then
exposed on a mask aligner (SUSS MicroTec MA6) at a
dose of 400mJ/cm2 through a chrome mask containing
1.6–1.8 μm holes, followed by a post-exposure bake
(1 min at 65 °C, 2 min at 90 °C, 1 min at 65 °C). The
lithographic pattern was developed by immersion for
1 min in SU-8 Developer (Kayaku AM), followed by rin-
sing with isopropyl alcohol. The pattern was hardened
with a hard-bake at 190 °C for 10min, followed by oxygen
plasma treatment (3 min, 30 sccm, 100W). The wafers
were then etched with an Ar-Cl2-based recipe for 20 min
at 180 °C via inductively coupled plasma reactive ion
etching (Oxford PlasmaPro 100 Cobra 300). Finally, the
resist mask was removed via a 15 min O2-CF4 plasma
etching followed by immersion in H2SO4:H2O bath for

30 s and washing in de-ionized water. After fabrication,
LPs were transferred and coated with a protective SiO2

layer following a modified Stöber method, as reported
before [1–2].

Laser particle functionalization
PEI-LPs
Chloropropyltriethoxysilane (CPTES) coating was first

performed on silica-coated LPs to introduce rich amino
groups on the surface. Briefly, 18 μl of the 10% CPTES-
EtOH solution (v/v) and 200 μl pure water were added into
LPs solution successively. After short sonication, the LP
mixture was placed on a thermomixer overnight at 70 °C
and 1000 rpm to complete the reaction. The mixture was
then centrifuged (4000 rcf, 8 min), followed by aspiration of
the supernatant and addition of fresh EtOH (2ml). After
another brief sonication the solution was again centrifuged
to remove the supernatant, and this washing cycle was
repeated for at least two more times. After the final
washing, we removed the supernatant EtOH and resus-
pended LPs in 2ml pure H2O. For PEI coating, 200 μl 10%
PEI (~1800 Da) water solution (v/v) was added into the
LPs-CPTES and sonicated for 5 h at 80 kHz. The sample
was then clean by three cycles of centrifugation/resuspen-
sion in EtOH. After the final wash, the PEI-LPs ware
resuspended into an appropriate amount of pure H2O to
bring the final concentration of LPs to 1M/10 μl.

Biotin-LPs
For the functionalization of Laser Particles (LPs) with

biotin, the silica-coated LPs were first resuspended in
1mL of 95% EtOH. Separately, 20 mg of Biotin-PEG2000-
Silane was dissolved in 1mL of 95% EtOH. The Biotin-
PEG2000-Silane solution was then added to the LP sus-
pension, and the mixture was incubated overnight at 65 °C
to ensure complete reaction. Afterwards, the LPs were
centrifuged at 2000 × g for 8 min, and the supernatant was
removed. The LPs were washed with 4mL of clean 95%
EtOH, briefly sonicated, and centrifuged again at 2000 × g
for 8 min. This washing step with 95% EtOH was repe-
ated, followed by an additional wash with 4 mL of deio-
nized (DI) water. After the final wash, the biotin-
functionalized LPs were resuspended in 1mL of DI water.

Cell culture
Most cell cultures used, including fibroblasts (L929

human cells), adenocarcinoma cells (HeLa human cancer
cells, 4T1 mouse triple-negative breast cancer cells and
MCF-7 human breast cancer cells), macrophage cells
(RAW 264.7 mouse cells) and Jurkat T lymphocyte were
purchased from American Type Culture Collection
(ATCC). Mouse cortical stem cells were obtained from
R&D Systems™ (Catalog Number NSC002). Mouse sple-
nocytes were obtained from ScienCellTM (Catalog
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Number #M5540), human KOPN-8 cells were Deutsche
Sammlung von Mikroorganismen und Zelkuturen GmbH
(Braunschweig, Germany), while suspension human
PBMC cells were from ZenBio (lot #PBMC042022A).
All cells were cultured and maintained following stan-

dard protocols from the supplier and incubated at 37 °C in
a humidified atmosphere of 5% CO2 and 95% air. Fibro-
blast cells, macrophage cells, and most adenocarcinoma
carcinoma cells (Hela, 4T1, and MDA-MB-231) were
cultured in DMEM essential cell media supplemented
with fetal bovine serum (10%, v/v) and penicillin/ strep-
tomycin (1%, v/v). MCF-7 cells and Jurkat T-cells were
cultured in RPMI-1640 medium supplemented with FBS
(10%, v/v), and penicillin/ streptomycin (1%, v/v). Cortical
stem cells were cultured in DMEM media, with 2% N21-
Max supplement and 1% penicillin/ streptomycin, with
daily additions of fibroblast- and epidermal-growth (FGF
basic and EGF, 20 ng/mL). Pre-coating the culture plates
with poly-L-ornithine and fibronectin was needed for
cortical stem cell cultures. Primary mouse splenocytes
and their isolated T cells were cultured and stimulated in
RPMI-1640 supplemented with FBS (10%, v/v), P/S (1%,
v/v), sodium pyruvate (1%, v/v), 1× non-essential amino
acids, 10 mM HEPES buffer, 1 × 2-mercaptoethanol,
recombinant mouse IL-2 (carrier-free) (10,000 U/mL),
recombinant mouse IL-7 (carrier-free) (5 ng/mL), and
recombinant mouse IL-15 (carrier-free) (10 ng/mL).
For primary immune cell work, cryopreserved human

PBMCs were quickly thawed on the same day as tagging
using a pre-warmed thawing medium (RPMI-1640 med-
ium supplemented with FBS (20%, v/v), and penicillin-
streptomycin (1%, v/v)). After being washed twice with
thawing medium, the PBMCs were resuspended and
incubated in 1mL of DNase solution for 15min (0.1 mg
bovine pancreatic DNase I in 1mL of RPMI-1640 medium)
at 4 °C. The cells were then washed with a wash buffer (10%
FBS, 1× Pluronic F-68, 2 mM EDTA, and 10mMHEPES in
PBS) prior to LP tagging. For isolated T cell work,
CD3+T cells were isolated following the EasySepTM

human T cell isolation kit protocol (STEMCELL). Primary
mouse splenocytes were harvested from BALB/c mice.
They were stimulated with phytohemagglutinin for 48 h,
then stimulated with phorbol 12-myristate 13-acetate
(PMA) overnight. Prior to tagging, the splenocytes’
CD3+T cells were isolated following the EasySepTM
mouse T cell isolation kit protocol (STEMCELL). Follow-
ing standard protocol, human KOPN-8 cells were thawed
in RPMI-1640 medium supplemented with 20% fetal
bovine serum and cultured in RPMI-1640 medium with
10% fetal bovine serum and 1% penicillin/streptomycin.

Tagging cells with PEI-LPs
Once confluent, adherent cell cultures were passaged by

washing with PBS and then detached by incubating in

TrypLE Express (Life Technologies) at 37 °C for 5 min,
washed with complete media, centrifuged (400 g for
5 min) to remove the supernatant and resuspend in fresh
media. For each tagging experiment, 100 k cells were
taken into a 1.5 mL tube and diluted to reach a final
concentration of 100k cells/100 µl. In the meantime, PEI-
LPs in sterile water were briefly sonicated to resuspend
and fully disperse them. An appropriate volume of LPs
solution (based on the desired final tagging ratio) was then
mixed to PBS at a concentration of 500 k LPs/100 μl PBS.
The LPs solution was mixed to the cell tube in 5 separate
equal additions, with 1/5 of the volume added every
10min. The cell tube was kept on a thermomixer at 37 °C,
800 rpm between additions. After the final addition, the
cell-LPs solution was kept on the mixer for another
30min. Finally, the cells were centrifuged (400 g for
5 min), resuspended in fresh complete cell media, gently
pipetted/mixed ten times, and seeded on culture plates at
the desired concentration.

Tagging cells with Ab-LPs
PBMC samples were stained with 1.0 µg anti-CD3-

biotin or 1.0 µg anti-CD19-biotin each for 15min at 4 °C
in wash buffer, washed, then incubated with 10 µg of
purified streptavidin each for 25min at 4 °C in wash buffer
and washed. In 1 mL per 500k cells, samples were tagged
with biotin-coated LPs by mixing the LP solution with the
sample at a ratio of 10 LPs to 1 cell, and promptly com-
pensating the with an appropriate amount of 10× PBS to
offset the deionized water of the LP solution. Samples
were then mixed on a thermomixer at 650 rpm while at
4 °C for 5 min, then centrifuged at 200 g for 5 min. Mixing
and centrifugation was repeated twice.
Isolated human T cells were tagged as above using anti-

CD3-biotin. KOPN-8 cells were tagged as above but using
anti-β2M-biotin. Mouse splenocyte-derived T cells were
tagged as above but using anti-H-2Kd-biotin and anti-
CD45-biotin.

Assessment of LPs tagging
Images of PEI-LPs tagged adherent cell cultures were

taken after 24 h incubation (upon tagging at a 5:1 LP to cell
ratio), following fixation in 4% paraformaldehyde (PFA).
Images were taken using a brightfield inverted microscope
(Olympus IX83). Tagging efficiency estimations for HeLa
and MCF7 cells were performed by culturing the tagged
samples at different initial tagging ratios and culturing for
different time intervals, as described in the main text. After
the appropriate culture time, the PEI-LPs-tagged cells were
fixed and several images per sample were taken. The
number of LPs in each cell was counted manually from the
collected images for at least 100 cells per sample.
High-resolution 3D images of LP localization in the

cytoplasm were obtained using a confocal fluorescence
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microscope (Olympus FV3000). LP localization was
obtained by staining them with an Alexa Fluor™ 488 TFP
ester (Life Technologies) by direct conjugation with the
anime groups on the surface of LPs-PEI through typical
amine-TFP crosslinker chemistry. Then, Hela cells were
tagged by PEI-LPs/AF488 and fixed by 4% PFA after
incubation at 6 h and 24 h. The cell nuclei were stained
with (4′,6-diamidino-2-phenylindole dihydrochloride)
(DAPI), while membranes were stained by CellMask™
deep red plasma membrane staining kit (Life Technolo-
gies) following the manufacturer’s protocol.
To assess the tagging efficiency of suspension cells

(PBMCs, KOPN-8, mouse splenocytes), the LASE flow
cytometer (see below) was used to record the number of
emission lines for each cell.

Measurements of LPs barcodes
Barcode measurements of tagged cells were performed

using two different instruments capable of measuring the
laser emission spectra of LPs: a confocal microscope
(Olympus FV3000) and a flow cytometer (Beckman Coulter
CytoFLEX). Both instruments were modified by adding a
1064 nm, 10 ns pulsed laser to pump the LPs and an IR-
spectrometer coupled to a SWIR camera (Sensor Unlimited
GL2048L) to measure their emission spectra. For threshold
measurements, the pump power on the confocal microscope
was controlled with an acousto-optic modulator (Quanta-
Tech). For long-term measurements, a stage-top incubator
was used to maintain a constant temperature of 37 °C and a
CO2 concentration of 5%. More information on the instru-
ments can be found in our previous publications11,25.
Both instruments return a list of spectra, either one per

pixel (in the case of the microscope) or one per event (in
the case of the flow cytometer). These spectra are ana-
lyzed in post-processing with a custom pipeline developed
in Python. First, a peak-finding algorithm is applied to
each spectrum (Si) to identify the different emission lines.
Each peak is then fitted with a gaussian function to better
estimate its central energy (Ei,j, j= 1…Mi, where Mi is the
number of peaks in the spectrum). For the flow cytometry
data, each cell is assigned a single spectrum, and the cell
barcode is just formed by the spectral position
(Ei,1,…,Ei,M) of the emission lines of that spectrum.
In the case of imaging data, multiple spectra can be

assigned to each LP (based on scanning pixel size and LP
emission properties). A clustering algorithm is applied to
the data extracted from the spectra to identify spatially
adjacent peaks with similar energy, with each resulting
cluster corresponding to the emission of a single LP. The
average energy of the peaks in the cluster is taken as the
emission energy of that LP. The collection of all energies
of the LPs inside an individual cell is then taken as its
barcode. In the current work, LP assignment to cells in
imaging data was performed manually.

HeLa cell matching
To validate barcoding and matching across two cycles of

flow cytometry, HeLa cells were tagged with PEI-LPs at a
mixing ratio of 5:1, as described previously, and incubated
for 24 h. Subsequently, the cells were stained with Cell-
Tracker Green (Invitrogen) at a concentration of 1 µM for
15min, following the manufacturer’s instructions. After
staining, the cells were rinsed, treated with trypsin,
detached from the culture dish, and resuspended in about
200 µL of wash buffer (10% FBS, 1× Pluronic F-68, 2 mM
EDTA, and 10 mM HEPES in PBS). A first measurement
was performed using the LASE flow cytometer. Following
this, the cells were collected in a 5 mL tube preloaded with
500 µL of wash buffer, centrifuged at 300 g for 7 min, and
the supernatant was removed. The cells were then
resuspended in 200 µL of wash buffer and measured a
second time with the flow cytometer.
To match cells between the two measurement cycles

(C1 and C2), we used a custom algorithm that scores
possible matches based on their likelihood. For two bar-
codes (E1 and E2), the algorithm assigns a score sðE1;E2Þ
based on the energy distance between their lines. For
barcodes with differing multiplicities, the algorithm con-
siders the subsets of closely aligned line pairs (within
1.5 meV) and applies penalties for unmatched lines. Two
sets of scores were calculated: “cross-matches” (Scross)
between C1 and C2, and the union of “self-matches” (Sself)
between each dataset (C1-C1, S11 and C2-C2, S22),
excluding self-comparisons. The Scross set contains a mix
of correct matches and incorrect matches caused by
nearby barcodes, while the Sself set contains only incorrect
matches. By comparing the score distributions for Scross
and Sself, the Scross set reveals a subpopulation with high
scores corresponding to correct matches, which are
absent in Sself. The scoring function was optimized to
maximize the size of the subpopulation of correct mat-
ches in Scross. Finally, all matches from Scross with scores
exceeding a threshold were selected, ensuring a correla-
tion of >98% in fluorescence signals.

Biocompatibility assessment of PEI-LPs tagged cells
The in vitro cytotoxicity of PEI-LPs was quantitatively

assessed using CCK-8 (ApexBio) assay for L929 and Hela
cells. Specifically, three groups of cells were tagged sepa-
rately with different mixing ratios of PEI-LP (LP/cell= 8,
15, 24). After co-incubation for 24 h in a 96-well plate
( ~ 3k cells/well), CCK-8 reagents were added following
manufacturer protocols (n= 6). Untagged cells at 24 h
were used as a control group. Absorbance measurements
were taken using a spectrophotometer (Epoch 2, Biotek
Instruments). For time-dependent cytotoxicity, cells (~ 3k
cells/well) tagged at an initial ratio of 15:1 (LP:cell) were
co-incubated 24, 48, 72, and 96 h in separate wells, and
the cell viability was evaluated with the CCK-8 method,
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with untagged control cells taken at the same time points
(n= 6).
The cell cycle progression of LPs-tagged cells was

determined through the cell synchronization method
using a double thymidine block. HeLa cells were tagged
with PEI-LPs at initial ratios of 6:1 and 15:1 (LP:HeLa)
and then plated into 96-well glass-bottom microplates at a
density of about 3000 cells/well. Untagged HeLa cells
were used as a control group. After overnight incubation
for LPs-tagged HeLa cells (37 °C, 5% CO2), an appropriate
thymidine stock solution (100 mM) was added to each
well to obtain a final concentration of 2 mM. The plates
were returned to the incubator and incubated for 20 h to
arrest most cells in the G1/S stage. Afterwards, the cells
were washed three times with pre-warmed PBS buffer and
fresh media was added. After 8 h of further incubation, a
second thymidine addition (2 mM final concentration)
was performed for 16 h. The cells were then released by
washing them three times with pre-warmed PBS buffer
and replacing with fresh media. The plates were returned
to the incubator, and four wells for each group were fixed
every 2 h over 24 h. At the end, all fixed cells were stained
with Hoechst 33342 (10 µM) for 15min, followed by two
washes with 200 µl of DPBS. A few fluorescence images of
each well were recorded using a confocal microscope
(Olympus FV3000) with a 10× objective. The fluorescence
intensity of the nuclei of each cell was quantitatively
calculated using ImageJ and then presented as a cell
number-fluorescence intensity distribution plot, from
which the proportions of cells in different stages (G1, S,
and G2) were obtained at different time points for the
three groups (n= 6).

Bulk RNA-seq samples preparation
Hela cells tagged with PEI-LPs were used for bulk RNA-

seq experiments. Fresh HeLa cells from ATCC (CCL-2)
were first thawed and cultured following standard pro-
tocols for two generations. Cells were then harvested and
tagged with PEI-LPs (as described above) in four different
groups: untagged, 5:1, 10:1, and 20:1 (LPs:cell). Two
replicates for each group were made, with 80 k cells in
each replicate. All cell samples were prepared in parallel
and using the same batch of PEI-LPs. After 24 h of
incubation, HeLa cells were harvested, suspended in PBS
buffer, and used for RNA extraction using the Direct-zol™
RNA Miniprep Plus kit (Zymo Research). Three times the
volume of TRI Reagent was added to each sample and
mixed thoroughly to lyse cells and then transferred to
RNA purification through primary RNA harvesting by
Zymo-Spin™ IIICG Column, removing DNA by DNA
DNase I treatment and several cycles of washing by RNA
Wash Buffer. The RNA obtained in this way was redis-
persed in DNase/RNase-free water and immediately
moved to a −80 °C refrigerator for storage. Quality

control test of all RNA samples was conducted with the
Agilent 2200 TapeStation system using RNA ScreenTape,
RNA ScreenTape sample buffer, and RNA ScreenTape
ladder (Agilent). The samples were then shipped over-
night in dry-ice for sequencing at an external company
(MedGenome Inc.).

Bulk RNA-seq data analysis
The quality of reads was assessed using FastQC

(v0.11.8). Key parameters evaluated included base quality
score distribution, sequence quality score distribution,
average base content per read, GC content distribution,
detection of PCR amplification issues, and over-
represented sequences. Adapter sequences were trim-
med using fastq-mcf (v1.05) and cutadapt (v2.5).
Sequences with low quality were excluded from further
analysis. To eliminate unwanted sequences, Bowtie2
(v2.5.1) was employed. Non-polyA tailed RNAs, mito-
chondrial genome sequences, ribosomal RNAs, transfer
RNAs, and remaining adapter sequences were removed to
ensure clean RNA-Seq data. The cleaned reads were
aligned to the reference human genome (GRCh37/hg19)
using STAR (v2.7.3a). This aligner is known for its high
speed and accuracy, employing a two-pass mapping
strategy to enhance detection of novel splice junctions.
Gene expression levels were quantified using HTSeq

(v0.11.2) to count reads mapping to gene exons, followed
by normalization with DESeq2. Additionally, expression
values were reported in FPKM units using cufflinks
(v2.2.1). Quality control of RNA-Seq data was further
validated with RNA-SeQC (v1.1.8), RSeQC (v3.0.1), and
MultiQC (v1.7). Differential expression analysis was per-
formed with the R Bioconductor DESeq2 package.

Data analyses and numerical simulations
All data analyses and numerical simulations were per-

formed with custom scripts written in Python, using the
numpy, scipy, matplotlib and scikit-learn libraries.
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