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Abstract: The sound-driven vibration of the tympanic membrane and ossicular chain of 
middle-ear bones is fundamental to hearing. Here we show that optical coherence tomography 
in phase synchrony with a sound stimulus is well suited for volumetric, vibrational imaging of 
the ossicles and tympanic membrane. This imaging tool — OCT vibrography — provides 
intuitive motion pictures of the ossicular chain and how they vary with frequency. Using the 
chinchilla ear as a model, we investigated the vibrational snapshots and phase delays of the 
manubrium, incus, and stapes over 100 Hz to 15 kHz. The vibrography images reveal a 
previously undescribed mode of motion of the chinchilla ossicles at high frequencies. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

The tympanic membrane (TM) and ossicular chain play a central role in hearing by providing 
acoustic impedance matching between the air-filled ear canal and the fluid-filled inner ear. 
The incoming sound energy is collected by the TM, transmitted through the ossicles to the 
cochlear fluid, and detected and transformed to neural signals in the inner ear. A dysfunction 
or damage in the middle ear results in hearing impairment. 

Vibrometric measurement of the ossicles and TM has been critical for advancing our 
understanding of the hearing mechanics and improving treatments such as middle-ear 
prosthetics. Vibro-acoustic analysis of the middle ear and TM has also been proposed for 
diagnosis of ossicular disorders and planning surgical interventions [1–3]. In the past, 
stroboscopic microscopy, capacitive probes, and the Mössbauer effect were used to measure 
the sound-induced vibrations at specific locations in the middle ear [4,5]. Modern 
investigations are generally conducted using more sensitive optical interferometric 
techniques, particularly laser Doppler vibrometry (LDV) and holography [6–8]. LDV and 
holography are surface measurement techniques and, therefore, require surgical preparation to 
access structures beyond the TM [9]. They are also subject to artefacts caused by other 
vibrating structures located behind the tissue of interest if those structures are sufficiently 
reflective [10]. 

Optical coherence tomography (OCT) is a cross-sectional imaging modality and its 
potential for structural imaging of the middle ear has been previously explored [11], primarily 
for assessing pathologies, such as otitis media [12], middle ear effusions [13], and 
cholesteatoma [14], in diagnostic and intraoperative settings [15,16]. Beyond anatomical 
imaging, phase-sensitive OCT has shown a promising potential for vibration measurements in 
hearing research [17–23]. Subhash et al. made one of the first demonstrations of depth-
resolved OCT vibrometry at a sound frequency of 500 Hz using a spectrometer-based OCT 
system [24]. Several groups demonstrated OCT vibrometry of the TM [25–28] and ossicles 
[29,30] with improved imaging and processing speeds, as well as interfaces suitable for live 
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2.3 Data processing to determine the amplitude and phase of vibration 

For each A-line, the wavelength-domain interferogram is corrected for a background offset 
and resampled linearly in wavenumber (k) based on the MZI reference data [35]. This step 
also reduces timing jitter between the data acquisition clock and wavelength sweep [36]. The 
resampled interferogram is multiplied by an apodization window function and further 
corrected for chromatic dispersion in the interferometer. The corrected interference fringes 
a(k,t,x,y) are Fourier transformed (k to z) to produce an A-line profile, A(z,t,x,y). The 
magnitude of the complex A-line represents optical reflectance and is displayed (in log scale) 
to show the structure of the sample. The phase φ(z,t,x,y) of the A-line contains the z-axis 
coordinates of the structure within a sub-wavelength range. It should be noted that the phase φ 
represents the phase of the optical interference signal and should not be confused with a 
“vibration phase” denoted φ, which refers to the phase of the mechanical motion of the 
structure. The sinusoidal displacement of each voxel at (z, x, y) at time t, 

( ) ( )2, , , si f t
zu z t x y u e π ϕ+= , is linked to the interference phase OCT via: 

 ( ) ( )0

0

, , ,
4

, , ,zu z t x
n

x z yy t
λ φ
π

=  (1) 

where λ0 is the center wavelength of the swept source in vacuum, and n0 is the refractive 
index of the medium. The optical phase difference Δφ between adjacent A-lines at each 
spatial location is computed with [37]: 

 ( ) ( ) ( )*
1ar, , , , , , ,gi i i

ROI

ROI A z t xt y A z t x yφ −
 Δ =  
 
  (2) 

where A* denotes the complex conjugate of A(z,t,x,y), and the summation is carried over a 
region of interest (ROI) for averaging motion within the region. The ROI may be a short axial 
segment or small volume. The averaging enhances the effective sensitivity of phase 
measurement without affecting spatial resolution because phase does not change significantly 
over multiple imaging voxels. The ROI-averaged displacement function is given by: 

( ) ( )0

04 1
, ,z k in

k

i
tu t ROI ROIλ

π φ
=

Δ=  , where the summation integrates the phase differences to 

obtain accumulated absolute phase from t0, the beginning of each sound wave cycle. 
The time series of displacement functions uz(t,ROI) contains all the information about the 

axial component of the sound-driven vibration. The magnitude and phase of the mechanical 
vibration at the sound frequency can be readily obtained by a Fourier transform of the 
displacement with respect to the time coordinate: 

 ( ) { }, ( , )z zuU f ROI t ROI=   (3) 

The amplitude and phase of Uz(fs,x,y,z) at the applied sound frequency fs gives the 
magnitude and phase of vibration in response to the stimulus. The acoustic transfer function is 
obtained by normalizing the measured signal with respect to the input sound stimulus 
recorded with the microphone. Axial velocity vz (≡ duz/dt) is computed from (i2πfs)Uz(fs). 

The smallest vibration that can be measured is ultimately limited by the optical signal-to-
noise ratio (SNR), defined as the power ratio of the amplitude (reflectivity) to the noise floor 
of |A(z,x,y)|. To a first-order approximation, the theoretical limit of vibration sensitivity σu is 
given by [36,38,39]: 

 0

04

1

SNR
u n

λσ
π

=  (4) 
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Upon taking the Fourier transform (t to f), the M-scan is effectively averaged m times, 

such that the frequency-domain amplitude sensitivity is uU mσ σ= . The theoretical 

sensitivity can be further improved with ROI averaging (described above) by a factor of N
when the ROI consists of N samples with an equal SNR. 

The SNR-limited vibration phase noise is linked to the amplitude noise and given by: 

 
U

Uϕ

σ
σ =  (5) 

The phase noise is also reduced by a factor of N when the data are averaged over N 
samples. 

At stimulus levels above ~100 dB SPL, the TM can move more than λ0/2 between two 
consecutive A-line scans, making |Δφ| > π. This can cause a phase wrapping artifact in the 
phase-sensitive measurement because the phase difference Δφ has 2π ambiguity. In addition, 
the TM motion can generate erroneous optical phase readings when the amplitude of motion 
becomes larger than the axial resolution of the OCT system. To avoid these artifacts, we 
limited the stimulus to levels where these artifacts did not occur. When we concentrate on 
ossicular motion, the SPL level is varied to produce a full-range of ossicular motion, and care 
is taken to segment out the TM region causing artifacts. 

2.4 System performance measurement: phase sensitivity and stability 

To characterize the sensitivity of our OCT vibrography system, we measured the vibration 
signal from a stationary object (2.8-kg block of aluminum) while varying the SNR by 
adjusting the optical power in the sample arm using a variable attenuator. First, the 
galvanometer scanner was turned off, and a 1 s M-scan was acquired for each level of 
attenuation. Then, another set of M-scans was acquired while the galvanometer scanner was 
turned on and a constant voltage was applied so that the probe beam was held at a fixed 
location on the object. The optical SNR, motion amplitude sensitivity, and noise spectra were 
computed from the data set. 

The sensitivity measured with the scanner off was in good agreement with the theoretical 
limitation (Fig. 3(a)). However, when the scanner was on, we found an excess amplitude 
noise with an amplitude of 4 nm, which is presumably due to mechanical jitter of the 
galvanometer mirror coupled with the feedback control of the driver. At relatively high SNR 
levels above 30 dB, the system’s sensitivity was limited by this scanner noise. In most parts 
of the middle ear structure, the optical SNR tends to be below 30 dB, in which the 
measurement is SNR-limited. The noise floor without the scanner noise was flat in the 
frequency domain (Fig. 3(b)) as expected from a purely SNR-limited case. When the scanner 
was on and the SNR was >35 dB, the mechanical scanner noise described a broad envelope 
centered around 8 kHz. The noise spectrum without the scanner noise revealed sharp noise 
peaks with an equal spacing of 625 Hz, which correspond to the 72 facets of the rotating 
polygon filter in the wavelength-swept laser source. We avoided these fixed noise frequencies 
when setting the sound stimulus frequency. 

Next, to measure vibration phase noise we placed a piezoelectric transducer (PZT) in the 
sample stage. The transducer was driven to oscillate with an amplitude of ~5 nm at a constant 
frequency of 9 kHz. Figure 3(c) shows the variation of measured vibration phase relative to 
the phase of the stimulus over a duration of 1 s, measured synchronized to the stimulus 
generation as described above (“Sync”). Each data point represents an average of 225 A-lines, 
a simulation of ROI averaging with N  = 225 that was used in some middle-ear imaging 
experiments described later. Apart from some random fluctuation, the measured phase was 
stable over time. However, when the PZT was driven by a function generator with an 
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Fig. 8. Reconstructed ossicular motion at 500 Hz and 15.0 kHz. (a) Motion-exaggerated 
animations and representative snapshots at φ = 0 and π. See Supplementary Visualization 1 for 
500 Hz and Supplementary Visualization 2 for 15 kHz. (b) Schematics of the two rotational 
modes of ossicular motion. The fundamental mode is predominant at frequencies below 5 kHz. 
Above 9 kHz, the secondary rotational motion becomes evident. 

4. Discussion 

The acoustic transfer function, projection phase maps, and reconstructed 3D rendered 
animations provide comprehensive and quantitative information and clear insights about the 
sound-driven motion of the ossicular chain. The near-half-cycle difference between the umbo 
and the incus-stapes at 15 kHz is consistent with the second ossicular rotational axis that is 
parallel to the manubrium and positioned between the manubrium and the incus. Such 
rotational modes have been hypothesized for small mammals by Fleischer [44]. This 
additional rotational mode of the ossicular chain can function to increase the motion of the 
incus and stapes at higher frequencies and may contribute critically to the efficient acoustic 
conduction of the ossicular chain over 10 octaves of sound frequency [45]. 

OCT shows promise as a tool to aid the diagnosis of middle ear pathology, by allowing 
visualization of middle-ear structure behind the TM, and quantification of sound-induced 
ossicular motion that can help distinguish abnormal function and its causes [31]. The 
maximum sound frequency in the current OCT system is limited to the Nyquist frequency of 
22.5 kHz. This frequency range is adequate for hearing research in humans (20 Hz to 20 kHz 
hearing range), and covers most of the chinchilla hearing range (50 Hz to 33 kHz) [46]. The 
total duration of a volumetric measurement, on the order of a minute, is a challenge for live 
patient or animal imaging due to motion artifacts. One possible approach, explored by 
MacDougall and colleagues [29], is to use standard anatomic OCT imaging to target a single 
location at which vibrometry can rapidly be performed. OCT systems with higher A-line rates 
of up to several MHz have been reported [47,48] and may enable considerable reduction of 
the total measurement time by allowing data acquisition in the B-M mode (comparing phases 
between successive B-scans [49]) instead of the M-B mode (comparing phases between 
successive A-lines) used in this study. 

In conclusion, we have described OCT vibrography for measuring and visualizing the 
sound-induced motion of the ossicles and TM and demonstrated its usefulness through the 
measurement of the chinchilla ear. The acoustic transfer functions we recorded are consistent 
with previous measurements obtained by LDVs and holography measurements. However, the 
unique ability of OCT vibrography to acquire volumetric data in conjunction with 3D 
structural images enabled us to appreciate the greater details of the ossicular motion, 
including the fundamental rotation around the malleus-incus axis and, importantly, to identify 
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a second rotational mode of ossicular motion at high frequencies. Our results demonstrate 
OCT vibrography as a powerful tool in hearing research. 
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