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Abstract: Acoustic wave velocity measurement based on optical coherence tomography (OCT)
is a promising approach to assess the mechanical properties of biological tissues and soft materials.
While studies to date have demonstrated proof of concept of different ways to excite and detect
mechanical waves, the quantitative performance of this modality as mechanical measurement
has been underdeveloped. Here, we investigate the frequency dependent measurement of the
wave propagation in viscoelastic tissues, using a piezoelectric point-contact probe driven with
various waveforms. We found that a frequency range of 2-10 kHz is a good window for corneal
elastography, in which the lowest-order flexural waves can be identified in post processing. We
tested our system on tissue-simulating phantoms and ex vivo porcine eyes, and demonstrate
reproducibility and inter-sample variability. Using the Kelvin-Voigt model of viscoelasticity,
we extracted the shear-elastic modulus and viscosity of the cornea and their correlation with
the corneal thickness, curvature, and eyeball mass. Our results show that our method can be a
quantitative, useful tool for the mechanical analysis of the cornea.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Changes in mechanical properties of corneal tissues have been linked to structural and geomet-
rical changes clinically observed in corneal degenerative diseases, such as keratoconus [1–3].
Measurement of corneal biomechanics offers opportunities for improving diagnosis and treatment
of the diseases. Biomechanical characterization also has the potential to improve the accuracy of
routine screening intraocular pressure (IOP) measurements by reducing errors due to variations
in corneal mechanical properties [4]. Furthermore, quantitative measurement of corneal tissue
stiffness could potentially improve refractive surgeries [5–7].
However, it remains challenging to measure the mechanical properties of corneal tissues

quantitatively. Mechanical measurement techniques, such as strip extensometry and eye inflation
tests, have been used extensively in laboratory settings, but are destructive and can not easily
be applied in vivo [1, 8–10]. Analyzing corneal responses to air puff tonometers, such as the
ocular response analyzer (Reichert) and Corvis ST (Oculus), can probe biomechanical changes
in normal and pathologic eyes of live patients [11–16], but does not provide a direct, quantitative
readout of elastic modulus [17]. Ultrasound elastography has been proposed to map the stiffness
of the cornea, but it has relatively low spatial resolution [18, 19]. Brillouin microscopy can
map the mechanical properties of tissues with high spatial resolution [20–22], but it measures
longitudinal modulus rather than shear modulus that is more directly related to tissue deformation
and stiffness.
Optical coherence elastography (OCE) is an emerging technique for localized measurements

of shear elastic modulus [23–25]. Traveling-wave OCE is one embodiment of OCE, in which the
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propagation of mechanical waves in tissues is visualized by OCT. This is particularly well suited
for the cornea with well-defined geometry and structure [26–30]. There is a direct theoretical
relationship between complex shear wave velocity cs and shear modulus µ:

µ = ρc2
s (1)

where ρ is material density. Like other soft materials, the corneal tissue is viscoelastic,
described by complex-valued, frequency-dependent shear modulus. As a result, cs has frequency
dependence (dispersion), and measurement of cs at a single frequency is insufficient to describe
the viscoelastic properties. Furthermore, the speed of waves propagating in the cornea is
influenced by the interfaces of the cornea with the air at the anterior surface and with the aqueous
humor at posterior surface. The mechanical waves traveling along the cornea are described as
guided (Lamb) waves [31]. OCE described in this paper measures the phase velocity of the
guided waves c. To compute c and ultimately complex-valued µ from c, it is essential to consider
the geometrical effect or waveguide dispersion of the waves, together with material dispersion.
A few recent studies have reported measurements of wave dispersion in the cornea using

OCE [29–31]. However, there are noticeable discrepancies among the results between different
groups and different approaches. The focus of our work described here is to characterize the
frequency dependence of wave velocity and its impact on elastic modulus estimation. The
following sections describe experimental and analytical methods to generate, measure and analyze
the mechanical wave propagation in the cornea, and to measure wave velocity over a frequency
range from 0 to 10 kHz.

2. OCE system

Elastography measurements were performed using a home-built, swept-source OCT system
previously described [32]. Briefly, this system has an A-line rate of 45 kHz, axial resolution of
15 µm and transverse resolution of 30 µm (full width at half maximum in air) using a polygon
swept laser with a tuning range of 80 nm and a center wavelength of 1280 nm. The acquisition
of OCT interference fringes is phase-stabilized using the reference signal of an external Mach-
Zehnder interferometer [33]. The optical beam is scanned using a two-axis galvanometer scanner
(Cambridge Technology, 6210H). The noise-limited sensitivity of the system to vibration is
approximately 4 nm [32].
Mechanical stimulation was achieved using a home-built piezoelectric probe (Fig. 1(a)). It

consists of a hemispheric ceramic tip with a diameter of 2 mm (Thorlabs, PKCESP) glued on
a piezoelectric transducer (PZT) (Thorlabs, PA4CEW). The probe is mounted on a translation
stage and brought to a physical contact with a sample. The broadband piezoelectric probe allows
to use virtually any stimulus waveform to generate mechanical waves. Three representative
waveforms are shown in Fig. 1(b). For a given peak-to-peak ratio, pure tones (first row) provide
the maximum amount of power in an individual frequency. An impulse waveform (second row)
allows broadband measurement in the frequency domain. A chirped signal (third row) provides
nearly uniform, maximum power density over a broad frequency range for a fixed peak-to-peak
amplitude [34–36]. Among the three types of stimulus, the most straightforward approach is
using pure tones at discrete, selected frequencies, whereas the chirp stimulus is particularly useful
to obtain a continuous dispersion curve over frequency.
To utilize the full Nyquist bandwidth (22.5 kHz), the OCT system was operated in the M-B

mode: m consecutive A-lines are acquired at any specific transverse location (x coordinate).
Each line is formed of 1024 pixels along the z axis. At each location along the x axis, a complete
time series (M-scan) is acquired for a single or repeated mechanical stimulus. Typically, each
individual stimulus was 5 ms long (225 lines) and repeated 64 times to improve measurement
sensitivity through averaging. After the M-scan, the OCT beam is moved to the next location
along the x axis, and the measurement is repeated. A single-line scan typically comprises
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Fig. 1. (a) Schematic of the contact probe and measurement setup. (b) Representative
stimulus waveforms used in this study (left) and their frequency contents.

96 transverse positions over a range of 10 mm. The complete resulting measurement is thus
comprised of 1024 pixels along the z axis, 64 repetitions of a 5 ms stimulus, and 96 pixels along
the x axis, which yields a total measurement time of approximately 30 s. The galvanometer
scanners have a finite stabilization time of approximately 200 µs, during which the mechanical
jitter of the scan mirror causes spurious phase fluctuations in the OCT signal. To circumvent this
problem, A-lines obtained during this transient period were simply ignored in post-processing.

3. Data processing and validation using an elastomer

3.1. Displacement field

A Fourier transform of raw OCT inteferometric data from the optical wavenumber domain to
axial position (z), repeated for each time (t) of A-line and lateral (x, y) point, produces a complex
OCT tomogram A(r, t), where r = (x, y, z). The magnitude of this multidimensional array,
typically in log scale, produces structural OCT images. The phase φ(r, t) of the complex A(r, t)
is used to compute the axial component of the displacement field uz(r, t) using the following set
of equations:

∆φ(r, ti) = arg

( ∑
r ∈ROI

A∗(r, ti−1)A(r, ti)

)
(2)

φ(r, tk) =
k∑
i=1
∆φ(r, ti) (3)

uz(r, tk) =
λ0

4πnm

(
φ(r, tk) + φ(rsurf, tk)

nm − n0
n0

)
(4)

where ROI is a small neighborhood around r , λ0 is the average free-space wavelength of the
OCT beam, nm and n0 are the refractive indices of the sample medium and the air above the
sample, respectively, and φ(rsurf, t) is the phase at the air-sample boundary. Note that although the
displacement field u(r, t) is a vector quantity, phase-sensitive OCT can only detect its component
along the optical beam uz(r, t).
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To visualize wave propagation along the transverse coordinates, a z-projection of the displace-
ment field was used. First, the top sample surface is identified using an automatic segmentation
algorithm (or manually when the algorithm failed in low SNR portions of the images). Then,
a ±5 pixels window around the top surface is defined and the signal in the region is summed
(Eq. (2)). This step acts as brightness-weighted averaging of the displacement field.

Figure 2 shows the projected displacement field measured in an elastomer sample obtained
with three different stimulus waveforms. The tissue-simulating silicone rubber phantom was
prepared by mixing part A and part B precursors (Smooth-On Inc., EcoFlexTM 00-10) with a 1:1
volume ratio and casting the mixture onto a cylindrical container with a diameter of 10 cm and
a height of 5 cm. The sample was removed from the mold after curing overnight. Mechanical
waves are launched at the contact with the PZT probe and propagate radially in the surface of the
homogeneous medium. The magnitude of the displacement is about 100 nm at the origin and
decreases with r . It is clearly seen from the single-tone profiles that, as the frequency increases,
the attenuation increases and the wavelength decreases. As a result, the number of detectable
wavelengths is nearly constant (about 2-3 full cycles).
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Fig. 2. Displacement field of elastic waves at the surface of an elastomer phantom for different
waveforms. (a) Several time frames selected from a full data set for single 100 µs-long
Gaussian impulse stimulus. (b) Corresponding time frames for a Schroeder-type chirp [34].
(c) Snapshots for pure tones at 1, 2, 4, 6, and 8 kHz, respectively.

3.2. Dispersion measurement

From the measured displacement field, the wave velocity is calculated via a couple of Fourier
transform steps. Briefly, a two-dimensional (2D) Fourier transform of the displacement field
(time t to frequency f and distance r to wavenumber k) produces a dispersion relation k( f ) in
the f -k plane. The phase velocity c is obtained from c = 2π f /k. For a chirped tone or any
arbitrary stimulus waveform, the processing is identical to an impulse stimulus except that an
additional step is needed to compute a cross-correlation function.
In Figure 3, we illustrate more detail of the data processing using actual experimental data

acquired with a chirp stimulus (0-10 kHz bandwidth) on the isotropic, semi-infinite elastomer
sample. We show intermediate steps in Figs. 3(b)-3(d) to illustrate the principle of data processing.
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Fig. 3. Processing steps to compute the mechanical wave dispersion of a sample applied to a
tissue-simulating phantom. (a) Displacement field as a function of the time and transverse
propagation distance (t-r plane). (b) Impulse response calculated from cross-correlation
with the stimulus waveform. (c-d) A Fourier transform of the cross-correlation function over
time, showing the magnitude, (c), and phase, (d), in the f -r plane. (e) Magnitude of the
Fourier transform of the Fourier-domain cross-correlation function over space, revealing the
dispersion curve of the lowest-order guided wave (bright curve). (f) Phase velocity obtained
from the dispersion map as a function of frequency.

However, in practice, one can skip these steps and move directly to the f -k domain (Fig. 3(e))
using a 2D Fourier transform of the raw data in the t-x domain (Fig. 3(a)).
Figure 3(a) displays the measured displacement field at the top surface of the sample (e.g.

Fig. 2(b)) in the t-r space: uz(r, t), where r denotes the propagation distance from the center of
the vibrating tip along the surface. In this experiment, the data was obtained using a line scan
along the x axis, so r = x. For the cornea, we note that r would be defined along the curved
surface.
The chirped displacement signal can be compressed to an impulse-like waveform using a

cross-correlation operation:
γu,s(r, τ) = uz(r, t)? s(t) , (5)

where τ is a time delay variable,? denotes the correlation operation, s(t) is the stimulus waveform,
and γu,s , is the cross-correlation between u and s. This step makes the chirp approach equivalent
to the impulse response measurement, but offers an advantage of enhanced signal-to-noise ratio
(for a given peak mechanical displacement) because the power in the chirp is distributed over a
longer period of time. This strategy is commonly used in radar imaging [37], and was recently
proposed in the context of traveling-wave OCE [35]. There are several options to use as the
reference waveform s(t). It can be either the displacement of the unloaded vibrating probe tip
measured using the OCT, the displacement field measured at some reference point in the sample
(alternatively, other reference material), or simply the voltage waveform applied to the probe if
the frequency response of the device is sufficiently flat. We have found that these three options
yielded identical results in practice. Figure 3(b) shows the calculated cross-correlation γu,s(r, τ),
illustrating the equivalence between the chirp and impulse stimuli.
The Fourier-domain function of the cross-correlation field (or the displacement field for the
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case of impulse stimulus) is given by

Γu,s(r, f ) = Uz(r, f ) S∗( f ) , (6)

where Γu,s ,Uz , and S are the Fourier transformations of γu,s , uz , and s, respectively, and ∗ denotes
complex conjugation. The magnitude and phase of the cross-spectrum Γu,s(r, f ) are plotted in
Figs. 3(c) and 3(d). We highlight that, in practice, we performed the correlation operation in the
frequency domain using Eq. (6), which implicitly enforces the periodicity of each time series and
naturally describes the repeated stimulus of our M-B scan acquisition configuration.
The patterns in the f -r plane appear to follow hyperbolic curves suggesting that Γu,s is a

function of ∼ f r . In other words, the magnitude and phase are approximately constant for a given
f · r product. This behavior is expected for the phase considering that the equi-phase contours of
a non-dispersive plane wave uz ∼ eikr would be given by ϕ = kr = (2π/c) f r. Any deviation
from the hyperbolic relation is due to dispersion. The hyperbolic relation of magnitude indicates
the frequency dependence in attenuation. In fact, the attenuation coefficients of compression
and shear waves in soft viscoelastic materials, including tissues, have been measured to increase
nearly linearly with frequency in the ultrasonic frequency range. [38, 39].

Careful inspection of the impulse response plot (Fig. 3(b)) reveals that the mechanical stimulus
excites not only the main Rayleigh-type wave (red), but also a weaker, faster-traveling wave
(blue) that is out of phase with the main wave. A detailed investigation of the origin of the fast
waves is outside the scope of this article. It is important to notice that the interference of the fast
wave with the main wave shows up in the amplitude and phase of the Fourier-domain correlation
function (Figs. 3(c) and 3(d)). In previous studies, the frequency-dependence of corneal wave
velocity was calculated using the slope of the phase profile over distance [27,29,30]. However,
we found that this method becomes unreliable, particularly at frequencies above 5 kHz because
the interference causes the phase profile over distance to become nonlinear. The nonlinear slope
yields position-dependent velocities even in homogeneous materials. When the amplitude of the
fast wave is comparable with or greater than that of the main wave, the wave velocity can be
greatly overestimated.
Our solution to this problem is to perform a second Fourier transform along the spatial axis

(transforming distance r to spatial frequency or wavenumber k). The result is shown in Fig. 3(e).
The magnitude of the Fourier transform in the f -k plane reveal the dispersion curves k( f ) of
all wave components. The main wave component can be tracked using a simple bounded max
search at every frequency and separated from other waves. Zero-padding by a factor 8 was used
in the Fourier transform so that the maxima could be found with greater accuracy.
Finally, the phase velocity c = 2π f /k is obtained from the dispersion curve. The result is

plotted in Fig. 3(f). In principle, the group velocity can also be obtained from the local slope
of the dispersion curve. Again, we note that the dispersion curve (Fig. 3(e)) can be directly
computed as

Γu,s( f , k) = U( f , k) S∗( f ) , (7)

whereU( f , k) is the 2D Fourier transform of the displacement, and S∗( f ) is the complex-conjugate
Fourier transform of the reference stimulus waveform.

To evaluate the fidelity of the measurement, we measured the wave velocity using an impulse
stimulus and pure tones at several discrete frequencies. All the results are plotted in Fig. 4(a). We
can see that the data obtained with the chirp (cyan circles) are consistent with those obtained using
a short 100 µs Gaussian pulse (magenta circles). The chirp stimulus tends to allow slightly less
noisy readings due to the improved signal to noise ratio. We also verified that both approaches
based on broadband stimuli produce the same results with pure tones (yellow squares). This
equivalence is expected for linear materials, which is a reasonable assumption for low amplitude
waves traveling in viscoelastic materials. The measurement data at frequencies below 2 kHz have
some apparent noise or artifact mainly due to the fast waves that were not well separated in the
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Fig. 4. (a) Measured phase velocity of silicone rubber using three different stimulus
waveforms: chirp (Schroeder-type [34], with frequency components between 0 and 10 kHz
by steps of 180 Hz), impulse (Gaussian-shaped with a 4σ pulse length of 100 µs), and single
tones at frequencies 2, 4, 6, 8 and 10 kHz. (b) Comparison to wave speeds measured by
rheometry in a low frequency range of 0.1-100 Hz). Inset, complex shear modulus measured
using a commercial shear rheometer.

f -k plane and therefore not completely removed. The data in 2-10 kHz show high fidelity. In this
high frequency range, the measured velocities increase from ∼ 7.4 to 9.6 m/s. The frequency
dependence is attributed to the material dispersion of the elastomer. The waveguide dispersion is
negligible because the 5 cm thickness of the sample is much greater than the wavelength in the
frequency range (3.7 mm at 2 kHz to 0.96 mm at 10 kHz). In this regime, the lowest-order Lamb
waves propagate along the surface, known as the Rayleigh surface wave.

Standard mechanical test equipment is operated at lower frequencies below 100 Hz. Therefore,
validation of our measurement is not straightforward. As indirect assessment, we measured the
shear storage modulus (µ′) and loss modulus (µ′′) of the elastomer material using a commercial
shear rheometer (AR-G2, TA Instruments) in the frequency range of 0.1 Hz and 100 Hz. The data
is shown in Fig. 4(b). Using the measured complex shear modulus, µ = µ′ + iµ′′ and Eq. (1), we
obtain the complex bulk shear speed. The real-part phase velocity is given by c = 1/Re(c−1

s ) [23],
which can be expressed as:

c =

√
|µ|

ρ

√
2

1 + cos δ
, (8)

where |µ| =
√
µ′2 + µ′′2 and tan δ = µ′′/µ′. The Rayleigh surface wave in incompressible

materials has a velocity cR ≈ 0.955 cs . We calculated the Rayleigh wave phase velocity from the
rheometer data and plot the result in Fig. 4(b), along with the OCE data. The two sets of data
are connected remarkably well, indirectly supporting the accuracy of our OCE measurement.
As described above, the rapid frequency dependence in the OCE data at 0.2-2 kHz is likely an
artifact due to fast-traveling waves.

4. Elastography of the cornea

4.1. Displacement field and dispersion

Figure 5(a) shows a schematic of the setup for corneal elastography. Porcine eyes (10 pairs) were
obtained less than 8 h postmortem, and connective tissues such as fat, muscles and the optic
nerve were dissected out for consistent boundary conditions and weight measurements. After
placing an eye in a custom-made holder mounted on a manual 3-axis positioning stage, the IOP
is set to 15 mmHg using a water column. When the IOP is stabilized, the eye is aligned with
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the OCT beam, and the PZT probe is brought to the eye about 4 mm away from the corneal
apex. After the probe tip makes a contact with the corneal epithelium, it was gently advanced by
∼ 100 µm further to ensure the mechanical contact to be maintained during stimulus actuation.
Experiments were performed on a total of 20 eyes (10 pairs).
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Fig. 5. (a) Schematic of elastography experiment performed on a porcine eye. (b) Time-
dependent displacement field in the cornea from a impulse stimulus. The displacement field
is overlaid over the standard OCT intensity image.

Figure 5(b) shows the vibrography images of the cornea in response to an 0.1-ms-long impulse
stimulus. At the onset (0 ms), the downward (positive displacement) movement initiates from the
point of contact and propagates along the corneal tissue. The displacement field is quite uniform
across the depth of the cornea, indicating the guided wave is predominantly the lowest-order,
anti-symmetric (flexural) Lamb wave. At 1 ms, the leading edge (red region) of the wave reaches
the corneal apex 4 mm away from the probe tip (i.e. c ≈ 4 m/s).
We acquired OCE dataset using the same chirp waveform and processing steps described in

Section 3. Figure 6 shows the measured displacement field in the t-r domain, the magnitude of
the cross-correlation function in the f -r domain, and the dispersion map in the f -k domain. Two
dispersive branches are apparent in Figs. 6(a) and 6(c), corresponding to the lowest-order Lamb
wave and a fast wave, respectively. The resulting interference patterns are visible in Fig. 6(b).
The identity of the fast wave(s) is not well understood but is thought to come from the excitation
of compression waves, which have bulk velocities of ∼ 1620 m/s in the cornea [22] and ∼ 1540
m/s in the aqueous humor, and possibly also from high-order guided waves. The dispersion curve
of the dominant Lamb wave (bright curve) was isolated and used to compute the phase velocity
dispersion of the cornea.
Figure 6(d) shows the velocity dispersion data obtained from a single eye, measured 3 times.

Between each measurement, the eye was removed from the holder and put back in place, and the
contact of the PZT probe was re-established, introducing substantial difference in the contact
position and OCT scan line. The result demonstrates a good repeatability of measurement with a
standard deviation of ±3.9 %.

Figure 6(e) shows the velocity dispersion curves for all of the 20 measured eyeballs. The data
show an inter-sample variation of ±7.2 % in wave velocity for the porcine eyes at a constant
IOP. Besides the small quantitative differences, all the curves show common features. At low
frequencies below 1.5 kHz, the velocity increases with decreasing frequency. We believe this is
an artifact due to the finite size of the cornea. We will discuss it more later. At higher frequencies
above 2 kHz, the velocity linearly increases with frequency. In the following section, we analyze
this frequency range to extract viscoelastic properties of the corneal tissue.
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Fig. 6. Phase velocity measurement of porcine corneas at the same IOP level of 15 mmHg.
(a) Displacement field. (b) Cross-spectrum magnitude. (c) Dispersion map obtained by a
2D Fourier transform of the displacement field. (d) Frequency-dependent phase velocity of
the same porcine cornea measured 3 times. (e) Frequency-dependent phase velocity of 20
different porcine eye samples.

4.2. Viscoelasticity

One promising approach to extract the biomechanical parameters of corneal tissue is to fit the
phase velocity dispersion curves with those predicted by a Lamb-wave waveguide model, such
as the modified Rayleigh-Lamb model combined with a viscoelatic material model such as the
Kelvin-Voigt (KV) model [29, 40]. This approach has been applied to data obtained with air
puff stimuli with narrowband frequency contents below 1 kHz [29]. To good approximation, the
cornea can be modeled as an infinite, flat plate with a thickness h and density ρ, bounded by
the air (or vacuum) on the top surface and water at the bottom surface. The material properties
are assumed to be isotropic and homogeneous. The shear modulus in the Kelvin-Voigt model is
described as [41]:

µ( f ) = µ0 + i(2π f ) η , (9)

where the real part µ0 corresponds to shear modulus at zero frequency (µ = µ0 at f = 0), and the
imaginary part originates from shear viscosity η. The bulk shear wave phase velocity is given
by [23]:

c =
√
µ0
ρ

√
2ζ2

ζ + 1
, (10)

where ζ =
√

1 + (2π f η/µ0)2.
The traveling-wave analysis in OCE described here measures the complex wavenumber k of

the wave, whose real part defines the wave velocity c and imaginary part describes the wave
attenuation α. Applying the surface boundary conditions to the elastodynamic wave equation
yields a 5 by 5 matrix equation whose determinant must be zero for guided waves (see equation
17 of reference [29]). In Fig. 7(a), we show a computational result of this model for h = 0.8 mm,
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ρ = 1 g/cm3, µ0 = 25 kPa, η = 0, and λ = 2.2 GPa. By taking η = 0, the result is consistent
with the well-known dispersion curves of various Lamb modes in isotropic, elastic plates. The
modes are labeled as either quasi-antisymmetric (An) or quasi-symmetric (Sn), where the index
n indicates the order of the mode. Due to the presence of different media at the top and
bottom boundaries, the modes do not have pure odd or even symmetry. At low frequencies, the
fundamental branch A0 represents the flexural plate wave. At high frequencies, it asymptotically
transforms to become the Scholte wave with a velocity cSch ≈ 0.846 cs , which is a surface wave
traveling at the cornea-fluid interface [23]. The S0 branch becomes the Rayleigh surface wave
traveling the cornea-air boundary at a velocity cRay ≈ 0.955 cs at high frequencies, whereas the
other branches tend towards the bulk shear wave velocity.
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Fig. 7. Parameter estimation using the Lamb wave model. (a) Example Lamb wave spectrum
for typical porcine cornea properties, neglecting viscosity. (b) Lamb wave model fitted to
the measured porcine cornea phase velocities. (c) Fit error estimation using the initial guess
variation method. Each marker represents the fit results for a different set of initial guess
parameters. Probability density function (PDF) contours are also shown to help visualization.
Each panel uses a different frequency ranges for fitting.

We fitted the A0-mode wave solution to the average phase velocity curve in the 2-10 kHz range
obtained from the 20 porcine cornea samples, using µ0 and η as the only two free parameters and
the trust-region-reflective least-square algorithm. The result is shown in Fig. 7(b), where the
best fit was obtained with µ0 = 20.5 kPa and η = 0.28 Pa s. We found that the model and the data
agree well over the fitting range. The positive slope in phase velocity is accounted for by viscous
damping.
To determine the precision of µ0 and η values, we have run the fitting calculation 100 times

using different initial guess values of µ0 randomly chosen between 10 and 50 kPa and of η between
0.05 and 0.45 Pa s. The fitting algorithm converges to a slightly different solution depending on
the initial guess. The distribution of solutions in the µ0-η space is shown in Fig. 7(c). When the
entire data set in the 2-10 kHz range was used, the analysis yields a narrow distribution with
standard deviations of <10 % for both µ0 and η. However, partial data for narrower frequency
ranges produce more inaccurate estimation, especially for η. Note that the distributions of µ0 and
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η are not independent. This result highlights that broadband excitation stimulus is necessary for
measuring both the stiffness and viscosity from velocity dispersion.

The wave attenuation coefficient α can also be obtained from the KVmodel using the following
equation [23]:

α = 2π f
√

ρ

µ0

√
ζ − 1
2ζ2 (11)

We measured the attenuation of the displacement field at each frequency by fitting a decaying
exponential to the magnitude expressed as a function of r. The 1/r-type diffraction loss was
taken into account by scaling the amplitude by

√
r prior to fitting. The attenuation value

obtained is shown in Fig. 8 for each of the 20 porcine corneas as grey lines and with the mean
and 2-standard-deviation statistics shown in green. The measured attenuation in the range of
0-4 kHz compares well with the near-quadratic frequency-dependence predicted by Eq. (11)
for µ0 = 20.5 kPa and η = 0.28 Pa s (dotted red line in Fig. 8). To account for waveguide loss,
we solved the Lamb wave characteristic equation using the KV-model material property and
calculated attenuation from the complex propagation constant (solid red line in Fig. 8). The
reasonably good correspondence in the 0-3.5 kHz range supports the validity of our analysis
based on the KV and Lamb wave model. There is a small offset of ∼ 0.15 mm−1 between the
data and theory, which may be attributed to the deviations of the cornea from the KV and Lamb
models. Note that because the attenuation was measured in the f -r , rather than f -k, domain, the
interference of the fast waves was not filtered out, resulting in unreliable attenuation measurement
in 4-10 kHz.
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Fig. 8. Wave attenuation measurement of porcine corneas as a function of frequency. Gray
lines represent the measured wave attenuation data for each of the 20 porcine eyes at an IOP
of 15 mmHg, measured by fitting an exponential decay function to the wave magnitude at
each frequency. Green line and shaded region represent the mean and 2 standard deviation
error. The solid red curve represents the attenuation predicted by the KV and Lamb models
with µ0 = 20.5 kPa and η = 0.28 Pa s previously obtained. The dotted line represents the
attenuation in the absence of waveguiding as predicted by Eq. (11).

4.3. Correlation of wave velocity with anatomical parameters

Figure 9 shows the distribution of shear modulus across the 20 eyes, plotted as a function of
the eyeball weight, central corneal thickness, and central anterior radius of curvature. Left and
right eyes of the same animal are represented with left- and right-pointing triangles of matching
color in Figs. 9(a)-9(c), and are plotted against each other in Fig. 9(d). We found rather strong
negative correlation with the weight (Pearson’s r2 = 0.56) and mild to weak correlation with the
curvature (r2 = 0.11). The origin of the clear weight dependence could be physiological, but
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other weight-dependent geometrical effect might have contributed via waveguide dispersion [42].
We found no correlation between shear modulus and corneal thickness (r2 = 0.048), which
is expected given that the Rayleigh-Lamb model takes into account the effects of thickness
on wave velocity. Other parameters influencing thickness, such as corneal swelling, could
potentially be appreciated, but the relatively narrow range of corneal thicknesses and the absence
of significant correlation suggests that this parameter was adequately controlled during our
experiments. Comparison between the left and right eye showed a moderately strong correlation
(r2 = 0.29) with a slope close to unity (dotted black line, Fig. 9d).
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Fig. 9. Measured static shear modulus, µ0 of 10 pairs of porcine eyes (20 eyes) as a function
of (a) weight, (b) central corneal thickness (CCT), and (c) anterior corneal radius of curvature.
(d) Comparison between the left and right eyes of matching pairs.

5. Discussion and conclusion

We found that PZT-based OCE is well suited to generate and measure the propagation of
broadband mechanical waves in samples, with advantages of the wide bandwidth, flat frequency
response, and low-cost of piezoelectric actuators. Using this technique, we have measured the
phase velocity dispersion, stiffness, and viscosity of porcine corneas with high fidelity, although
we do not have alternative, gold-standard values to validate the data quantitatively. For clinical
applications, non-contact approaches such as air puffs and acoustic radiation force [43,44] are
appealing. However, using local anesthetics, contact with the cornea is a well tolerated medical
procedure used in tonometry, pachymetry, and some embodiements of OCE [45]. The PZT-based
contact probe may also be a useful tool for other potential applications of OCE in dermatology
and other medical areas, as well as laboratory measurement.
Our result indicate that 2-10 kHz is a suitable frequency window for traveling-wave OCE for

the cornea. Below 2 kHz, the data deviates strongly from the A0 branch of the theoretical model,
as previously observed [30]. It appears unlikely that this is the signature of the S0 mode, because
the velocity dispersion and the spatial pattern of displacement field deviate from those of the
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symmetric mode. One possible explanation is that low frequency excitation is susceptible to
excite resonance modes of the cornea or the whole eyeball [46]. Resonance modes are standing
waves, making them appear to have infinite wave velocity. These fast waves interfere in the
phase velocity analysis, causing overestimation of the shear wave velocity. While the f -k domain
processing approach proposed here is designed to reject these waves, it is less effective when
multiple branches overlap at low frequency below 2 kHz for the cornea. Another explanation
is that at frequencies below 1 kHz, the wavelength becomes comparable with the size of the
cornea. The wave propagation could therefore be more influenced by any inhomogeneity in the
mechanical properties of the cornea and reflection from the cornea-sclera interface.
Fitting the velocity dispersion with the A0 wave is only an approximation. In principle, the

contact stimulus on the surface could excite a combination of multiple modes including the S0
and higher order A and S modes in the far field if the excitation frequency is above their cutoffs.
In the near field, an infinity of complex modes are also required to fully describe the wave field
in the vicinity of the source, where the bulk shear and compression waves have not yet developed
into true guided waves. Our f -k domain approach can separate the different wave components if
the propagation distance is long enough, but this is often not the case due to viscous damping
and the finite extent of the cornea itself. Furthermore, the wave velocity is similar between the
A0 and S0 modes above 5 kHz. The Lamb wave model also neglects the effects of IOP-induced
stress, corneal curvature, anisotropy, and inhomogeneity of the material properties, resulting in
biased estimations of shear modulus and viscosity [42].
In the KV model, we calculate a 10-dB attenuation distance of the shear wave, L, defined as

the propagation distance over which the displacement decreases to 10%:

L =
ln 10
α

, (12)

The ratio of L to the wavelength λ = c/ f , or the number of wave cycles (N = L/λ) within the
effective propagation distance is:

N =
ln 10
2π

√
ζ + 1
ζ − 1

, (13)

If we impose N > 1 as a necessary condition for reliable measurement, we get ζ < 1.31 , which
is (2π f η) < 0.85µ0. For porcine corneas, using our measurement data of µ0 = 20.5 kPa and
η = 0.28 Pa s, we find the high-frequency limit to be 9.9 kHz. Although the 10-dB attenuation
distance is somewhat arbitrary and will depend on the sensitivity of the instrument and the
magnitudes of spurious fast waves, our empirical experience suggests that this condition is
reasonable. Another difficulty encountered at higher frequencies above 10 kHz is lowdisplacement
amplitude, which for a fixed power, decreases with frequency.

The above criteria for optimal frequency ranges imply an important condition for samples. For
highly viscous samples, the high-frequency limit would come down to a lower value. When this
value is lower than the low-frequency limit imposed by the size of the sample, the traveling-wave
analysis would not yield reliable measurement, and different algorithms may be needed to extract
both the elastic and viscous properties.

The shear modulus values of porcine corneas we measured are comparable with previous values
measured by other OCE techniques using air puff [29,31] and acoustic radiation force [30], as well
as ultrasound elastography [19]. There are discrepancies of up to a factor of two among reported
values, part of which could be attributed to differences in wave frequency, IOP, processing
algorithm, and tissue models (e.g. linear elastic).
In summary, this study describes the generation and measurement of broadband mechanical

waves in the cornea to characterize the phase velocity dispersion in the cornea and estimate its
viscoelastic material parameters. Our results suggest that a wide frequency band improves the
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accuracy of elasticity and viscosity estimation by fitting the phase velocity with a Lamb wave
model. This research shows that the combination of phase-sensitive OCT vibration sensing with
a piezoelectric actuator is a promising approach to measure the mechanical properties of the
cornea and other samples.
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