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Optical coherence tomography (OCT) is useful for materials defect analysis and inspection with the additional
possibility of quantitative dimensional metrology. Here, we present an automated image-processing algorithm for
OCT analysis of roll-to-roll multilayers in 3Dmanufacturing of advanced ceramics. It has the advantage of avoiding
filtering and preset modeling, and will, thus, introduce a simplification. The algorithm is validated for its capabil-
ity of measuring the thickness of ceramic layers, extracting the boundaries of embedded features with irregular
shapes, and detecting the geometric deformations. The accuracy of the algorithm is very high, and the reliability is
better than 1 μm when evaluating with the OCT images using the same gauge block step height reference. The
method may be suitable for industrial applications to the rapid inspection of manufactured samples with high
accuracy and robustness. © 2014 Optical Society of America

OCIS codes: (100.0100) Image processing; (100.3008) Image recognition, algorithms and filters; (110.4500)
Optical coherence tomography; (120.3940) Metrology; (230.4170) Multilayers.
http://dx.doi.org/10.1364/JOSAA.31.000217

1. INTRODUCTION
With the development of “roll-to-roll multi-layered-material 3D
shaping technology,” large-scale and cost-effective production
of micro devices using advanced ceramic materials is enabled.
In parallel, higher demands are put on in-process 3D micro-
metrology, with requirements of high-precision, rapid, and
automated inspection techniques. This has to cover thickness
measurements of component layers, determination of shape
and dimensions of embedded 3D structures, assessment
of free and embedded surface quality, and detection of
de-bonding, cracks, warping, and deformations [1].

High dimensional accuracy is needed because, in ceramic
components for terahertz frequency applications, variation in
alumina thickness can affect the dielectric loss at these
sub-mm wavelengths. For ceramic coolers used in automotive
lighting systems, the dimensional quality is very important to
get the best heat dissipation performance when attached to a
high-power LED system. In microfluidic devices, the flow
parameters of media are influenced by a change of channel
dimensions and surface quality. Moreover, defects such as
large residual pores in the ceramic layers significantly
influence the thermal conductivities and mechanical strengths
of the layers.

Optical coherence tomography (OCT) [2] is a promising
technique that provides non-contact and non-destructive 3D
inspection with micrometer resolution at high data acquisition
rates. Although its applications, to a large extent, are related

to the field of biomedical science, it also merges into
other areas, such as dimensional metrology, materials re-
search, non-destructive testing, and art diagnostics [3]. The
characteristics of OCT make it a promising tool to meet the
high demands of quality control and inspection in rolled manu-
facturing processes, even for highly scattering ceramic
materials [4,5].

Two effects come along with the utilization of OCT; namely,
large data sets and speckles [6]. In-process OCT inspection on
a production line generates a large amount of data, which
makes visual observation by an expert very time-consuming
or even impossible. Noise and speckle degrade the image
quality and, therefore, cause significant uncertainty in the
observed position of features; moreover, when a visual
observation is made, the habit of the operator can even in-
crease this uncertainty. Thus, an accurate and robust image
processing and automated boundary detection algorithm is
highly needed.

Published methods of OCT image analysis with segmentation
mainly focus on segmenting the intra-retinal layers, tissue struc-
tures, and nerve head, but none has been found for industrial
applications. Eichel et al. [7] proposed a semi-automatic
model-based segmentation method. First, the algorithm identi-
fies the layers of the cornea using an enhanced intelligent
“scissor,” and a correspondence model is established between
the upper and lower layers of the cornea. Then, all five bounda-
ries are extracted using a global optimization method, exploiting
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the prior information. Garvin et al. [8] presented an approach
that allowed for the optimal and simultaneous segmentation
of multiple 3D surfaces by transforming the segmentation prob-
lem into the layered-graph-theoretic problem of finding a
minimum-cost closed set in a vertex-weighted geometric graph.
A model-based approach was introduced by Kajić et al. [9]. Dur-
ing the learning stage, parameters of a statistical model are ex-
tracted so that it best fits the training data obtained frommanual
segmentations by human operators. That includes the possible
variation of layer boundaries as well as texture information
within the layers. Ghorbel et al. [10] used a method based on
a global segmentation algorithm, such as active contours and
Markov random fields, and a Kalman filter was designed to
model the approximate parallelism between the photoreceptor
segments and to detect them. Mishra et al. [11] have proposed a
method based on a classical contour algorithm, which was first
proposed by Kass et al. [12]. This algorithm has been modified
for better handling of OCT retinal tomograms. It is unclear how
sensitive the last fine tuning filter is, in practice, for different
kinds of images with different feature shapes and resolutions.

It is obvious that most of the authors use filtering and
thresholding, but the problemwith OCT images is that filtering
of speckle is not a trivial task. For this reason, these kinds of
filters do not really create an optimum result. Also, all kinds of
filtering of images destroy information. Even if an advanced
dynamic thresholding algorithm is developed, it will be very
problematic to separate real information from false detections
caused by the speckle, especially in areas in the image where
the signal-to-noise ratio (SNR) is approaching one. The
commonly used preset boundary models, which may cause
false detection when features are irregular, require computa-
tional processes that are usually too complex.

In this paper, we present a novel and simple image process-
ing and segmentation method, of which the performance is
largely improved and thoroughly evaluated compared with
its previous version in [5]. The final extraction of information
is done based on the original OCT image. Therefore, there is
no loss of information due to filtering. In the next section, the
experimental details of the OCT systems and the ceramic
samples are introduced. The details of the algorithm are then
described in Section 3 and the algorithm performance is fi-
nally evaluated in Section 4.

2. EXPERIMENTAL
A. Fourier-Domain OCT Imaging
OCT is an interferometric technique based on a measurement
arm, typically in the axial depth direction, and a reference
arm. Instead of mechanically moving a reference mirror or
the object being investigated in the axial direction for acquir-
ing the interferogram, the Fourier-domain (FD) OCT detects
the spatial frequency spectrum without any mechanical scan.
Two types of FD–OCT exist [2]. One is the spectral-domain
(SD) OCT that utilizes a spectrometer detector array to obtain
the spectral interferogram, and the other is the swept-source
(SS) OCT that employs a wavelength-swept laser source with
a center wavelength λ0 and bandwidth Δλ. The latter uses a
single photo detector to record the spectrally resolved
interferogram sequentially while tuning the wavelength of
the light source. The spatial information in the axial direction
(A-scan) is then obtained by an inverse Fourier-transform of
the spectrally resolved interferogram [2]. By using a galvo

mirror, the beam can be directed to different x-positions,
creating a cross-sectional B-scan; by moving the specimen
in the y-direction, or using a second galvo mirror, a full 3D
volume C-scan is acquired and stored as a 3D intensity
map I�x; y; z�. By avoiding the mechanical scans in the axial
direction, only lateral scans are performed, using a galvo
mirror. This significantly enhances the signal acquisition rate.
An FD–OCT with near-100 MHz A-scans has been reported by
Fard et al. [13].

Apart from the advantages of being non-destructive and
operating at high speed, the axial resolution of OCT systems
is high (Δz ≈ 0.44 · λ20∕Δλ), due to the requirement of a broad-
band tunable laser. Lateral optical resolution is determined by
the numerical aperture (NA) of the objective lens. Usually, a
low NA objective is used to achieve a long confocal length and
suppress multiple light scattering; whereas, micrometer-level
lateral resolution is achieved using a high NA objective.

B. OCT Specifications
In this work, a Thorlabs [14] SS OCT and a laboratory SS OCT
[15], operating at 1.3 μm center wavelength, were used for
investigating the ceramic samples. The specifications of the
systems are given in Table 1.

C. Ceramic Samples
The investigated samples are made from alumina ceramic
layers manufactured by tape casting, lamination, laser-
machining, and sintering. The layers were provided by Swerea
IVF [16] and the laser-machining processes were done at
Wrocław University of Technology [17] and at MEC, Cardiff
University. The samples were developed for applications in
terahertz components, coolers for automotive lighting sys-
tems, and microfluidic devices and sensors.

The SEM image presented as Fig. 1 shows the prepared
cross section of a sintered alumina sample. The residual pores
that are assumed to be filled with air are distributed randomly
in the ceramic matrix, where the porosity and the average
pore diameter of alumina sample are obtained as 1%–1.8%
and 0.4–0.6 μm, respectively. Compared to the crystalline
grain boundaries, the pores are more likely to scatter light
strongly and cause multiple scattering and speckles in OCT
(due to the high refractive index of alumina: n ∼ 1.75 at
λ ∼ 1.3 μm). Therefore, the received intensity and image
contrast in the OCT scan are degraded rapidly with increasing
depth.

The samples are positioned under the OCT probe to get
cross-sectional B-scan images. For example, the marked cross
sections 1 and 2 in Fig. 2 represent the imaged sites for a sin-
gle ceramic layer with a laser-machined channel on top and a
double layer stack with an embedded channel.

Table 1. Specifications of SS OCT Systems

Thorlabs Laboratory

Center wavelength 1325 nm 1300 nm
Spectral bandwidth >100 nm >110 nm
Axial scan rate 16 kHz 10 kHz
Lateral pixel size 5.86 μm∕pixel 7.4 μm∕pixel
Axial pixel size 5.86 μm∕pixel 4.12 μm∕pixel
Lateral resolution 25 μm <20 μm
Axial resolution 12 μm (in air) 12 μm (in air)
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3. NEW BOUNDARY DETECTION
ALGORITHM
A. Signal to Be Detected
A typical OCT B-scan image at cross section 2 of Fig. 2 is
shown in Fig. 3, and on the right hand side the averaged
A-scan intensity profile is shown after integration along each
pixel row. The peaks appearing in this A-scan profile re-
present interfaces in the layered ceramic stack. To make
the OCT technique accessible as a metrology tool, we need
good algorithms for detecting these edges in the OCT images.
A large number of edge detection techniques have been
described in the image processing literature [18]. Most of
these edge detector algorithms use the first, second, or even
the third derivative of the image for extracting the inflection
point of the edge transfer function that corresponds to the lo-
cation of the edge. As an example, the commonly used Canny
detector [18] works quite well if the SNR is reasonably high in

the image. In OCT images of biological samples, a layer boun-
dary is usually made up from the assembly of smaller tissue
microstructures that sometimes have relatively small changes
in refractive index compared to their surroundings. In our
case, we are not interested in the scattering particles them-
selves or grain structures in the alumina ceramic material.
On the contrary, the industrial ceramic samples investigated
here contain continuous surfaces that exhibit very pro-
nounced air–material interface reflection peaks in OCT
images. The geometric shapes and positions of the surface
boundaries are the features of interest.

As seen in Fig 3, the three horizontal boundaries can be
easily perceived by the human eye. We can use the local image
contrast to describe how easy it is to see the brighter interface
reflection peaks by a human eye. The local contrast is defined
as C � �Imax − IB�∕IB, where Imax is the signal of the peaks as
marked in the above A-scan and IB is the local background
signal level. When the local contrast is too low, human visual
perception cannot make an accurate observation of the
boundaries. Another metric to assess the quality of OCT
images is the SNR. Typically, SNR is defined as the ratio of
the mean and standard deviation of the intensity,
SNR � hIi∕σ. We know that SNRs of OCT images can be
lower than 1 [6], i.e., the OCT images contain a lot of dark
spots with an intensity close to zero. This fact makes it
practically impossible to use a standard edge detector algo-
rithm to find the interfaces with a high degree of accuracy.
In this paper, therefore, we use the defined local image con-
trast and SNR as metrics to evaluate the performance of our
algorithm.

B. Concept
The ultimate algorithm for finding features in the OCT images
should use as few tunable parameters as possible. It should be
simple, fast, and, of course, be robust against noise. It would
also be an advantage if the algorithm does not need any filter-
ing and preset models.

Based on the poor local image contrast present in the OCT
images of ceramic samples, we have chosen a different ap-
proach for solving the problem of extracting the interface in-
formation from these images. The idea of this concept has its
root in measuring the so-called “mura” in images of display
masks. Mura is a Japanese word meaning “not perfect”
[19]. Mura is caused by extremely small systematic placement
errors of pixels on the mask. In a visual inspection of the
mask, these artifacts are seen as weak contrast changes in
lines or bands across the mask. In an image of the mask, it
is almost impossible to measure these placement errors
due to the fact that the error is of the same magnitude, or
smaller than the random noise.

In an OCT image, we have a similar case. It is easy for an
experienced observer to see features in the image thanks to
the human brain’s preference for filling in missing informa-
tion. However, to teach a computer to recognize and measure
these interrupted or noisy features is a real challenge. Based
on the material characteristics and geometry of the features,
we made a major assumption that the real ridges (interface
reflection maxima in the OCT image) are longer than false
ridges. The latter are caused by speckles and discrete small
scatter centers, although we know that the surface profile
is continuous everywhere for the alumina layer.

Fig. 1. SEM image of the prepared cross section of the sintered
alumina sample.

Fig. 2. Geometrical layout of sample stack. Marked cross sections 1
and 2 correspond to OCT imaging planes.

Fig. 3. OCT B-scan of cross section 2 (marked in Fig. 2) and its cor-
responding average A-scan. The white bar corresponds to 150 μm in
the x-direction. Optical distance scaled by the refractive index of
alumina applies in the z-direction in the A-scan profile. Image
obtained by the Thorlabs OCT.

Ekberg et al. Vol. 31, No. 2 / February 2014 / J. Opt. Soc. Am. A 219



C. Method
The method can be summarized in three steps, as diagrammed
in Fig. 4, where the labels A–F correspond to the images in
Fig. 5. First, we extract local intensity maxima that will form
more or less continuous ridges of pixels. Then, the longer
segments are extracted using the assumption of a continuous

surface. A template of the extracted image is built, where the
ridges are marked as ones in a logical image with pixel
precision. In the final step, a second algorithm is applied
on the original OCT image to achieve the sub-pixel-precision
refinement.

1. Detection of Intensity Ridges
To demonstrate the method, we use a B-scan of a laser-
machined ceramic tape in air. Figure 5 shows six images that
represent the steps in the new method. References to this
figure will be made in the following two sections of this paper.
The input is a cross-sectional OCT image at cross section 1 of
Fig. 2, i.e., an alumina layer with a laser-machined groove.
This image is shown in Fig. 5A. The task is to extract feature
information from the image, which, in this case, is the
surrounding air–material interface. This information can be
used later for recreating the shape of the channel, curvature,
and surface roughness.

The first step is to select a suitable window for extraction of
elongated local intensity maxima (ridges) We do that by using
a kernel with a size Kx, Kz � 2 ·m� 1, 2 · n� 1, where m, n
are integers. This assures the kernel has a symmetric center
point. The kernel is then scanned over the entire image for
finding ridges extending in the x-direction. Then, the kernel
is rotated 90° and scanned for finding ridges in z-direction.
Ridges in any direction will be found by the kernels.

In each pixel location, the following procedure is run
(the case is shown for ridges in x-direction only):

The local mean values μx�i; j� of the pixels are calculated
from the intensities of the pixels covered by the kernel. This
is done by convolving the input OCT image Img�i; j� with the
Kx by Kz large kernel (containing only ones) and having its
local center x � 0, z � 0, where z � −m, −m� 1;…m
and x � −n, −n� 1;…n, and dividing by the number of pixels
used in the kernel. This can be expressed mathematically as:

μx�i; j� � 1
Kx · Kz

�
Xm
z�−m

Xn
x�−n

Img�i� z; j � x�; (1)

where i is the row index in the OCT image and j is the
column index.

In the next step, we calculate the projection vector Vxi;j ,
shown in Fig. 6.

Fig. 4. Steps of the new OCT boundary detection algorithm.

Fig. 5. Images describing the different steps in the algorithm. A Input
OCT image. B The result after extracting longest ridges in x-direction.
C The result after extracting longest ridges in z-direction. D The log-
ical connection map, D � B� C. E Enlargement of the connection
map marked with a white rectangle in D. F Final logical template
of ridges after merging and cleaning process. The vertical bar in A
represents a 150 μm optical distance in the material. Fig. 6. Principle of the calculation of the projection vector Vxi;j .

220 J. Opt. Soc. Am. A / Vol. 31, No. 2 / February 2014 Ekberg et al.



We generate the following vector Vxi;j of Kz number of
elements, where each element with the index k in the interval
�0; Kz − 1� around the point i, j is calculated as:

Vxi;j�k� �
1
Kx

�
Xn
x�−n

Img�i� k −m; j � x�: (2)

As seen, each element in this vector is the mean of Kx num-
ber of pixels in x-direction extending from j − n to j � n. Vxi;j
is, in other words, a projection of Kz number of local mean
values. The next step is to estimate the maximum
μxmax�i; j� and the location of the maximum Lx�i; j� in the
vector Vxi;j . This can be expressed as:

μxmax�i; j� � max�Vxi;j� (3)

Lx�i; j� � arg max�Vxi;j� (4)

After this, we assume that we have a ridge pixel, provided
the following logical condition is true:

Lx�i; j� � floor�Kz∕2� (5)

where floor�Kz∕2� rounds the elements of Kz∕2 to the nearest
integers less than or equal to Kz∕2. If Lx�i; j� is equal to the
floor (Kz∕2), then we have a local maximum in the middle of
the vector Vxi;j at location i, j, In such a case, we save the
maximum μxmax�i; j� in a new image ImgX�i; j� at location
i, j. The same procedure is then performed with a rotated ker-
nel for finding ridges in the z-direction. The mathematical
expressions for these operations are similar to the above
Eqs. (1)–(5). The result is saved in another image ImgZ�i; j�.

The size of the kernel (Kx, Kz) should be large to suppress
noise as much as possible. However, it is obvious that the spa-
tial resolution, i.e., the ability to detect features with high
spatial frequency, will set a limit of the size of the kernel.
In the OCT images we have analyzed, we found a proper size
is in the range (5,5)–(17,17) pixels for the kernel.

To avoid using ridges in regions of the image where we
have very flat “high plateaus,” we use a dimensionless mea-
sure of the strength of a ridge pixel. These local strength
values Sx�i; j� and Sz�i; j� are calculated separately in x- and
z-direction s only for the pixels that fulfil condition (5) as:

Sx�i; j� � μx�i; j�∕μxmax�i; j�; (6)

Sz�i; j� � μz�i; j�∕μzmax�i; j�: (7)

A regular OCT image is presented in 256 gray levels. The
problem now is to set a valid threshold for Sx and Sz. As
can be seen from Eqs. (6) and (7), strong local maxima will
give large Sx and Sz values; therefore, by choosing a local
threshold Tx for Sx and Tz for Sz, we can control the sensi-
tivity of the ridge extracting algorithm separately in each
direction, and only ridge pixels with a Sx and Sz above the
thresholds will be used in the next step.

When looking at the simple example presented in Fig. 5A,
we see that the only interesting information is at the top air–
material interface. It is, therefore, not necessary to examine
ridges in the entire image. For the purpose of speeding up

the algorithm, we thus select a region of interest (ROI).
The final logical images used for further processing,
ridgesX and ridgesZ, are then calculated as:

ridgesX�i; j� � 1 if Sx�i; j� > Tx; 0 if Sx�i; j� ≤ Tx; (8)

ridgesZ�i; j� � 1 if Sz�i; j� > Tz; 0 if Sz�i; j� ≤ Tz: (9)

In Figs. 5B and 5C, the images ridgesX and ridgesZ are
presented as examples of what pixels are ridges and are left
in x-direction and z-direction after the above treatment.

2. Merging Horizontal and Vertical Ridges
When imaging horizontal ceramic layers and measuring layer
boundaries extending primarily in an x, y-plane, the ROI will
be found in the horizontal x-direction. Therefore, we use the
ridgesX image [Fig. 5B] for a first estimation of ridges contain-
ing relevant layer information. As seen in the figure, there are
some long ridges but also some gaps, probably caused by sur-
face roughness and speckles, so that pixels in this region did
not fulfil condition (5) above. Besides the horizontal
air–material interface in the image, we are also aiming for
a representation of the laser-machined channel. To fill in the
missing pixels of the channel, we use the ridgesZ image and
generate a logical connection map. This map is presented in
Fig. 5D. Here, we first generate a cross point image that is
simply the sum of the ridgesX and ridgesZ images. Since
ridgesX and ridgesZ are logical images, they just contain
“1” in a pixel that is a ridge pixel and “0” for a pixel that is
not a ridge pixel. For x- and z-ridges with a common point,
the sum will be equal to “2.” Thus, a pixel in the cross point
image with the value of two is a connection point of two ridges
extending in horizontal and vertical directions. The difference
in strength, i.e., if Sx�i; j� > Sz�i; j�, is also marked in the con-
nection map. In this way, we can find the most probable con-
tinuation of a ridge at a connection point. As shown in Fig. 5E,
the connection points are marked with white pixels and the
horizontal and vertical ridges with gray pixels. By using the
connection map, we can now merge horizontal and vertical
ridges using some simple logic. Horizontal and vertical ridges
can only be merged together at a connection point if the
following conditions are met:

(1) The connection point is the first or last connection
point along a horizontal ridge. Eventual connection points
in-between those points are certainly generated by speckle
and are, therefore, false ridges.

(2) The ridge to connect to is stronger in the vertical direc-
tion at the connection point.

3. Construction of Continuous Features
After the vertical ridges are merged, the eventual short-gaps
of, at most, three pixels are bridged (according to the lateral
resolution of OCT systems). This bridging is only used tempo-
rarily for the construction of the most probable features in the
image. After these processes, the final pixel-resolved template
is obtained and, for the current case, it is presented in Fig. 5F.
Based on this template, we can calculate the actual interface
reflection peaks at sub-pixel resolution by applying the sub-
sequent refinement algorithm.
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D. Sub-Pixel Refinement Algorithm
In the template, each ridge pixel fulfills condition (5) above.
This means that, inside the local kernel with the size Kx, Kz,
we know that there is a local maximum at location i, j. We
now use a closer neighborhood around this ridge pixel to find
where the maximum is located, with sub-pixel precision. The
smallest neighborhood you can use is the eight pixels that sur-
round the pixel at location i, j. According to Eqs. (10) and
(11), the gradients of these pixels are calculated as eight
vectors (black arrows in Fig. 7) pointing toward the locations
of the local maxima:

gradX�i; j� � 0.5 × �Img�i; j � 1� − Img�i; j − 1��; (10)

gradZ�i; j� � 0.5 × �Img�i� 1; j� − Img�i − 1; j��: (11)

The directions are given by the gradient angle:

θ�i; j� � arctan�gradZ�i; j�∕gradX�i; j��; (12)

and are marked with red dashed arrows in Fig. 7. The neigh-
boring pixels’ “opinions” of the locations of the maxima are
given by the strength of the gradient in x- and z-direction:

SXZ�i; j� �
���������������������������������������������������������
gradX�i; j�2 � gradZ�i; j�2

q
; (13)

and marked with red dots, which must be inside the white
circle to be accepted. The red crosshair that is calculated
by averaging the red dots is the sub-pixel location of the
maximum at location i, j.

If the location i, j is not a maximum, i.e., less than 6 opin-
ions (the red dots) are accepted for a ridge in x-direction, and
no pixels are accepted within the small white square in Fig. 7,
then we skip this location without further notice. Otherwise,

the sub-pixel location of the crosshair maximum for the ridge
pixel at location i, j will be used, and a chain of pixels describ-
ing the ridge with sub-pixel precision is built, as shown in
Fig. 8, where the logical template in Fig. 5F is used.

An important feature of this algorithm is its ability to find
the true boundary of reflection maxima with sub-pixel preci-
sion. Furthermore, it can remove pixels that are not real local
maxima in the eight pixel neighborhood, but have been found
in a larger area Kx, Kz around location (i, j) by the algorithm
described in Section 3.C. The final result is generated using
the original OCT image, without loss of information due to
filtering effects.

4. RESULTS AND DISCUSSION
A. Evaluation of the Image Processing Algorithm
In the following sections, the performance of the algorithm is
evaluated. This is important because, no matter how good the
OCT system is, errors in image processing can easily destroy
measurement accuracy. However, there are no standard
guidelines on how to perform such an evaluation [20], particu-
larly for OCT image processing algorithms. Moreover, we are
lacking a standard terminology for describing the goodness of
algorithms quantitatively. That relates to the difficulty in find-
ing suitable metrics to provide objective measures of perfor-
mance [20]. We define the following indicators with reference
to Wirth et al. [20] for evaluating our algorithm. Note that
these indicators are not defined and used in the exactly same
way as the metrology terminology [21].

(1) Accuracy: how well the algorithm has performed with
respect to some reference images or human visual obser-
vations.

(2) Reliability: the degree to which an algorithm, when
repeated using the images of the same reference sample,
yields the same result. The reliability is expressed as the stan-
dard deviation of the measurement results from these images.

(3) Sensitivity: how responsive an algorithm is to small
changes in features.

(4) Robustness: an algorithm’s capacity for tolerating
various image qualities.

(5) Adaptability: how the algorithm deals with variability
in images.

(6) Efficiency: the practical viability of an algorithm (time
and space).

The overall accuracy is quantitatively indicated by compar-
ing the nominal value with the measured value. However, the
discrepancies between these values are caused by: (a) the
uncertainty of the OCT system due to optical and mech-
anical imperfections and environmental influence, and

Fig. 7. Eight pixel neighborhood of a ridge pixel i, j (marked with a
white square) belonging to a ridge in x-direction. The black arrows are
the gradient vectors, originating at the centers of these eight pixels
and pointing toward the locations of the local maxima, which are
marked with red dots. The red crosshair that is calculated as the
center of gravity of the red dots is the final sub-pixel location of
the ridge pixel at location i, j.

Fig. 8. Result after the sub-pixel-precision location of each pixel in
the template shown in Fig. 5F has been calculated. A few false ridges
left in the template will not be accepted in the refinement. Both the
horizontal boundary and the highly tilted slope of the channel can be
extracted.
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(b) uncertainty due to the image processing algorithm. These
two sources are not easy to evaluate separately; therefore, the
latter is also qualitatively evaluated by human visual obser-
vations.

It is also important to mention that, when the measured
horizontal boundaries are not closely adjacent in depth, the
sub-pixel accuracy of the positions of these boundaries can
be derived far better than the A-scan OCT axial resolution
(see Table 1), as the boundaries are obtained as an average
from a large number of pixels along a horizontal line in the
B-scan. Thus, the axial resolution is not suitable as an indica-
tor for the accuracy and precision of an OCT system.

In this paper, the evaluation tasks were defined by the
demands of an inspection system of the future “roll-to-roll
multi-layered 3D shaping technology of ceramic micro devi-
ces.” The material–air interfaces are extracted from OCT im-
ages for measuring thicknesses of component layers, for
determining shapes and dimensions of embedded structures,
and for detecting deformations and delamination.

B. Accuracy and Reliability
Two pieces of ceramic gauge blocks [22] (height standard) are
used to create accurate step heights of 1.005 mm. The maxi-
mum permissible error (MPE) is 0.4 μm in height. The layout
of the gauge blocks is shown in Fig. 9 and the OCT imaging
site is marked with the red line.

In Fig. 10, the OCT image of the 1.005 mm step and the seg-
mented result are shown. The top surfaces are extracted using
the described algorithm with sub-pixel precision, and repre-
sented by many small crosses. The step height is then calcu-
lated as the average distance between fitted lines to the lower
and upper surfaces, respectively, given by the interface reflec-
tion peaks in the OCT images. The measurement is repeated
with the gauge blocks slightly moved to test the reliability of
our algorithm. The tilt-compensated result is reported in
Table 2 as the average value of the measured step heights,

from several different OCT images. The reliability is obtained
as the standard deviation of the measured values.

The accuracy is also evaluated with the cross-sectional
OCT images of an alumina stack with two embedded chan-
nels. The geometric layout of the sample stack is similar to
that shown in Fig. 2. The top layer has a thickness of
142 μm, measured using an inductive spherical probe (MPE
0.7 μm) toward a spherical ball, to minimize waviness contri-
butions to the thickness measurement. The average depth of
the channels is 64 μm, measured using a well-calibrated Zygo
New View 7300 scanning white light interferometer [23]. The
root-mean-square (RMS) roughness of the alumina layers is
around 60 nm, measured with a Talystep surface profiler
(2 μm tip radius and 250 μm profile length). The surface could
be much rougher at the channel bottom due to the laser proc-
ess. A number of adjacent cross-sectional OCT images of the
alumina stack are analyzed, and an example is shown in
Fig. 11. An excellent agreement between human visual obser-
vation and the image processing result is obtained. The
quantitative measurement results are listed in Table 3.

The above numerical results show that the overall accuracy
is high. The reliability of the algorithm is confirmed only by
the ceramic gauge block because the alumina sample is not
perfectly flat and, therefore, is not considered a suitable refer-
ence sample. The true reliability of the algorithm is actually
better than that shown in Table 2 as the errors are partly
due to the OCT system and possible environmental changes.

The differences between the nominal and measured values
in Table 3 are larger than those in Table 2, which is mainly
because of the wavy and rough surfaces of the alumina sam-
ples. Moreover, the error of refractive index is unknown when
measuring the thickness of the alumina layer. Therefore, the
goodness of the algorithm as perceived by the human eyes is
also an important evaluation criterion, and we see a perfect
overlap of the extracted pixels on the bright lines in Figs. 10
and 11. However, an advantage of the algorithm over the com-
monly used visual observation technique is that, the fuzzy
boundaries in the image, caused by strong reflection at the
air–ceramic interfaces, do not affect the algorithm in finding
the real interface peaks. Thus, we can conclude that the new
boundary detection algorithm is accurate and reliable. In the
following section, we will analyze the other four evaluation
criteria using different OCT images of our ceramic samples.

C. Sensitivity and Robustness

1. Small Changes in Feature
Deformation and delamination between two stacked ceramic
layers are not uncommon in the sintering process. As can be
seen in the OCT image of a two-layer alumina stack (Fig. 12),
the surfaces of the top layers are curved and the delamination
between the two layers creates a thin wedge-shaped air gap.
On the left of the image, only one boundary can be seen due to
the axial resolution limit of OCT while two boundaries are
present at a certain gap distance.

Fig. 9. Schematic layout of the gauge blocks.

Fig. 10. OCT image of the step height of the ceramic gauge blocks
(left). Small crosses represent the extracted boundaries with sub-pixel
precision (right). The laboratory OCT system is used.

Table 2. Step Height of Ceramic Gauge Blocks

Certified gauge block height 1.005 mm� 0.2 μm
Average measured height 1.0048 mm
Reliability �0.9 μm
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As shown in Figs. 12B and 12C, the algorithm extracts this
information quite well and in good comparison with the
human visual system. The smallest detectable separation be-
tween the two layers is found to be 3.5 pixels (corresponding
to 14.4 μm), which is very close to the experimental 12 μm
axial resolution limit of this OCT system.

2. Low Quality Noisy Images
Because of light scattering in materials, there is a maximum
depth that can be extracted by OCT. By using a wedge-shaped
ceramic layer, this depth limit can be found by determining at
what depth the rear interface is drowned in noise. This tech-
nique is displayed in Fig. 12, which shows the cross section

OCT image of a single high-scattering alumina ceramic layer.
The image is captured by the laboratory 1.3 μm OCT system
and, due to the strong scattering of the material, the rear
surface of the alumina layer can hardly be seen. The local im-
age contrast is extremely low (<6%) for the rear surface and
the SNR is approaching 1, due to speckles. Also, the signifi-
cant loss of intensity due to light extinction makes the line
segmentation more difficult. However, our algorithm extracts
the two boundaries and the extracted pixels overlap on the
boundaries precisely, as can be seen in Fig. 13. The rear boun-
dary is not detected as continuous, due to the noise. This
extremely difficult test shows that the sensitivity and robust-
ness of the algorithm is very high and the extraction result is
comparable to that of human visual observation. The layer
thickness is calculated as the optical distance divided by
the refractive index (1.746) of alumina at λ ∼ 1.3 μm. Thus,
the probing depth of this laboratory 1.3 μm OCT system is
188 μm for this high-scattering alumina.

D. Adaptability
A two-layer alumina ceramic stack with a laser-machined chan-
nel in between is used for evaluating OCT images of embedded
structures (Fig. 14). The schematic layout has been shown in
Fig. 2. The feature in the upward-facing surface of the bottom
layer can be considered an embedded micro channel along
the direction perpendicular to the page. Without providing the

Fig. 11. Cross-sectional OCT image of an alumina stack with two em-
bedded channels (upper) and the image processing result (lower). The
images were captured with the 1.3 μm laboratory OCT system and the
layers are segmented simultaneously.

Table 3. Measurement of Alumina Sample Stack

Thickness of
Top Layer (μm)

Depth of
Channel (μm)

Reference valuea 142 64� 2
Measured by OCT 145b 66

aMeasured by the inductive spherical probe and Zygo NV7300.
bTheoretical refractive index of alumina at 1.3 μm is 1.75.

Fig. 12. Cross-sectional OCT images of a two-layer alumina stack
with deformation and delamination, as obtained with the 1.3 μm lab-
oratory OCT. A Original OCT image, B the extracted pixels describing
each boundary, and C an enlargement of the boundary in the area
marked in B. The layers are segmented simultaneously. The vertical
bar represents optical distance.
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algorithm with any pre-set model and a priori information, the
boundaries of the layers and the embedded feature are
extracted. The pixels representing the algorithm determined

boundaries that are shown in Fig. 14B. From Fig. 14C, it can
be clearly seen that the sub-pixel-extracted crosses follow the
channel boundary with very high accuracy, so that the shape and
dimensions of the embedded feature can be easily recognized
and calculated. This example shows the capability of the
algorithm for dealing with arbitrary geometric shapes of the
boundaries in OCT images.

E. Efficiency
The algorithm is written in MATLAB and the efficiency is very
high, using a normal PC with Intel Core2 Quad CPU Q9400
@2.66 GHz and a 4 GB RAM. Processing time for the OCT
image (as shown in Fig. 11), with 280 × 220 pixels and four
boundaries, can be less than 1 s. By optimizing the MATLAB
code, an even higher speed can be achieved.

5. CONCLUSION
This paper has presented a new boundary detection algo-
rithm, developed for OCT data suffering from low signal-to-
noise levels. It is particularly suited for accurate metrology
applications in OCT-captured images. The performance of
the image processing and line segmentation, based on our
algorithm, was evaluated using six different, and previously
recognized, criteria. Based on a large number of OCT images,
of which a few are shown in this paper, we find that the
algorithm is robust against boundaries with different levels of
local image contrast, varying from a few percent to 100%.
Images with very low signal-to-noise ratios can also be
handled, and results show that the sensitivity of the algorithm
is comparable to that of human visual perception.

For the future roll-to-roll multi-layered 3D shaping technol-
ogy of ceramic materials, the OCT technique has been shown
to be a promising technique, as its advantages of high speed,
high resolution, and non-destructiveness can be utilized. In an
on-line 3D monitoring system of roll-to-roll manufacturing
image processing, it is essential to handle large data volumes
at high speed and with high accuracy. Our dedicated image
processing algorithm is a simple and practical method to
extract material boundary information from very noisy OCT
images. This information can be further used for measuring
thicknesses of component layers, determining shapes and
geometric dimensions of embedded structures, and detecting
deformations and delamination.

In the future, the authors plan to extend the algorithm for
processing volumetric C-scan OCT data, and for extracting the
boundaries appearing as intensity gradients in OCT images
due to small changes of the refractive index at material
interfaces.
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