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 CURRENT
OPINION Brillouin microscopy: assessing ocular tissue

biomechanics

Seok Hyun Yuna and Dimitri Chernyakb

Purpose of review

Assessment of corneal biomechanics has been an unmet clinical need in ophthalmology for many years.
Many researchers and clinicians have identified corneal biomechanics as source of variability in refractive
procedures and one of the main factors in keratoconus. However, it has been difficult to accurately
characterize corneal biomechanics in patients. The recent development of Brillouin light scattering
microscopy heightens the promise of bringing biomechanics into the clinic. The aim of this review is to
overview the progress and discuss prospective applications of this new technology.

Recent findings

Brillouin microscopy uses a low-power near-infrared laser beam to determine longitudinal modulus or
mechanical compressibility of tissue by analyzing the return signal spectrum. Human clinical studies have
demonstrated significant difference in the elastic properties of normal corneas versus corneas diagnosed
with mild and severe keratoconus. Clinical data have also shown biomechanical changes after corneal
cross-linking treatment of keratoconus patients. Brillouin measurements of the crystalline lens and sclera
have also been demonstrated.

Summary

Brillouin microscopy is a promising technology under commercial development at present. The technique
enables physicians to characterize the biomechanical properties of ocular tissues.
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INTRODUCTION

Multiple techniques have emerged in recent years
for measuring corneal biomechanics. The most com-
mon approach uses an air puff and analyzes corneal
deformability against the external pressure using
tonometry, topography, or optical coherence
tomography (OCT). While providing clinically use-
ful information, the output of these devices is influ-
enced by intraocular pressure (IOP) and geometric
properties of the cornea. Extracting corneal bio-
mechanical data from such measurements relies
on multiple assumptions and modeling. Another
drawback of these techniques is that they do not
provide spatial aspect of tissue strength as it may
vary across stromal thickness, from center to periph-
ery, and at the focal point of disease.

The study discusses a novel optical technique –
Brillouin microscopy – that measures spectral shift
of a probing laser beam as it scatters from a localized
volume of tissue. Brillouin spectral shift has direct
relationship to longitudinal modulus or mechanical
compressibility of tissue. Using confocal imaging it
can produce a full volumetric map of the elastic

properties. We discuss latest clinical evaluation of
the technique in human studies conducted under
Institutional Review Board-approved protocols.

BACKGROUND

As corneal refractive surgery had become wide-
spread around the world, researchers and clinicians
became more interested in biomechanics of the
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stroma [1]. Even with very precise modern-day exci-
mer lasers, variability of tissue strength has been
implicated in suboptimal outcomes of laser-assisted
in situ keratomileusis (LASIK) and other procedures
[2]. Significant differences in corneal strength have
been noted between normal eyes, eyes after refrac-
tive surgery, and also eyes with keratoconus [3].

Today there are two instruments that provide
some insight into corneal biomechanics: the ocular
response analyzer (ORA) from Reichert and the
Corvis ST from Oculus. Both are based on measure-
ment of dynamic corneal response to a puff of air.
The ORA device provides a corneal hysteresis mea-
surement, which has been shown to correlate with
known corneal pathologies such as keratoconus
[4,5]. Although useful in some applications [6], cor-
neal hysteresis values can be produced by various
combinations of corneal thickness, rigidity, intraoc-
ular pressure, and hydration, and therefore do not
truly represent corneal biomechanical properties.
More recently available Corvis ST device provides
more detailed information about corneal response
by using high-speed Scheimpflug imaging. It pro-
vides a so called Corneal Biomechanical Index (CBI)
which includes corneal thickness information. CBI
has been shown to improve keratoconus detectabil-
ity [7], and in combination with tomographic data
in corneal ectasia detection [8

&

]. Ongoing research
may discover additional parameters [9]. Both ORA
and Corvis ST devices have shown clinical useful-
ness, but do not provide direct measurement of
corneal elasticity and do not allow three-dimen-
sional mapping of these properties of stroma. The
mapping of localized corneal properties has impor-
tant clinical benefits. First, it allows localization of
corneal weakening, such as in case of early kerato-
conus, which produces focal region of increased
elasticity [10]. Second, it allows depth-dependent

mapping of corneal strength important in refractive
surgery [11] and monitoring effectiveness of corneal
cross-linking treatments [12,13].

Some ex-vivo methods have been used to
address this gap, but in-vivo imaging has been diffi-
cult. Ultrasound surface wave elastometry has been
used for measurements in donor corneas [14], and
recently in vivo [15]. OCT-based elastography has
been attempted to measure variation in biomechan-
ical strength between middle and posterior stroma
[16]. Although promising, the methods require a
complex finite element model of the cornea to
deduce actual biomechanical moduli from available
data. Other OCT elastography techniques that mea-
sure acoustic surface waves are under development
in preclinical stages [17,18].

BRILLOUIN TECHNIQUE

The principle of Brillouin microscopy is illustrated
in Fig. 1. Brillouin light scattering occurs by the
interaction of light and intrinsic acoustic waves in
tissues. The acoustic waves are naturally present in
tissue. They originate from thermal fluctuations of
molecules, which generate pressure fluctuations
that propagate at the speed of sound (�1620 m/s
in corneal stroma). The acoustic waves modulate
the refractive index periodically, and when light is
reflected from this modulation, a Doppler frequency
shift occurs. The frequency shift is proportional to

KEY POINTS

� Brillouin microscopy allows full-volume mapping of
longitudinal elastic modulus of cornea.

� Brillouin microscopy can be used for screening and
monitoring of keratoconus progression.

� Brillouin microscopy can be used for assessment of
corneal cross-linking procedure effectiveness including
the spatial map of tissue changes and remodeling.

� Future clinical applications of Brillouin microscopy
extend into refractive surgery.

� Additional ophthalmic applications of Brillouin
microscopy include measurements of crystalline lens
and sclera
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FIGURE 1. The principle of Brillouin microscopy. A low-
power, narrowband NIR laser light is focused into the
corneal tissue, and the Doppler Brillouin frequency shift of
scattered light from the focus is analyzed by a confocal
spectrometer. Spontaneous Brillouin scattering originates
from thermodynamically induced pressure (acoustic) waves.
The magnitude of Brillouin frequency is proportional to the
acoustic propagation speed of tissue at the focus and
provides a direct measurement of local longitudinal modulus
of the tissue. NIR, near-infrared.

Refractive surgery

300 www.co-ophthalmology.com Volume 29 � Number 4 � July 2018



the speed of sound (Brillouin frequency¼2�
acoustic speed/wavelength of light in the tissue).
The acoustic speed is proportional to the square of
longitudinal modulus. Longitudinal modulus is
defined as the magnitude of hydrostatic pressure
required to cause a fractional volume change and
is approximately the inverse of the compressibility.
Brillouin microscopy uses a low-power, focused laser
beam and a high-resolution confocal spectrometer
to measure the Brillouin frequency at the focus [19].
By scanning the beam, the spatial variation of
longitudinal modulus of tissue is mapped.

A compelling advantage of Brillouin microscopy
is that it provides a direct readout of the local tissue
property [20

&&

]. In the sense that the primary output
of Brillouin microscopy is the acoustic speed
information, this technique is analogous to high-
frequency ultrasound microscopy [21]. However, as
an all-optical technique, Brillouin microscopy does
not require any physical contact, deposits no acous-
tic energy in the tissue, and provides microscopic
three-dimensional resolution [22].

It should be noted that longitudinal modulus
does not directly correlate with the elasticity or
stiffness a physician can feel by touching the tissue.
The latter mechanical property is better described in
terms of shear (or Young’s) modulus [23]. From the
mechanical perspective, shear and longitudinal
moduli are two independent elastic properties and
have vastly different magnitudes in soft tissues.
However, it is expected that during normal physio-
logical changes or pathologic processes in vivo, these
two moduli are more likely to change in the same
direction. For example, the thickening (thinning) of
collagen fibrils in cornea stroma would increase
(decrease) both moduli. Nonetheless, caution is
needed when relating longitudinal and shear mod-
uli and interpreting Brillouin outputs.

CLINICAL APPLICATIONS

Ocular biomechanics plays significant role in diag-
nostic and treatment of eye diseases [24]. We over-
view the recent clinical results obtained with
Brillouin microscopy and discuss several specific
applications based on the biomechanical character-
izations of the cornea, crystalline lens, and the
sclera.

Baseline data of normal population

Currently available Brillouin microscopes use near-
infrared (NIR) laser light at a wavelength of 780 nm
[25

&&

]. At this wavelength, the Brillouin frequencies
measured in normal human corneas fall in a tight
range between 5.69 and 5.76 GHz, which

correspond to longitudinal modulus of 2.74–
2.81 GPa (Fig. 2a).

Because the acoustic speed varies with water
content in tissues [26], Brillouin frequency is sensi-
tive to corneal hydration. This has been recently
studied by measuring volunteers during daytime
[27

&

]. The time-lapse data showed the effects of
hydration change in both corneal thickness and
Brillouin frequency in the first 1 h after wake-up,
but Brillouin frequency is stabilized after the tran-
sient period within instrument’s sensitivity (Fig. 2b).
The sensitivity of Brillouin frequency to hydration,
not only the compressibility of collagen fibrils and
extracellular matrix, must be considered in inter-
preting the underlying structural and molecular
changes of tissue from the Brillouin frequency.
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FIGURE 2. Brillouin measurements of normal population. (a)
Central cornea Brillouin frequency values of normal
individuals in an age range of 15–70. (b) Diurnal change of
a healthy volunteer. Within 1 h after wake-up, the hydration
level of corneal stroma is stabilized, so are the central
corneal thickness (CCT) and Brillouin frequency. The
magnitude of frequency variation during day time is less
than the instrument’s sensitivity of �10 MHz.

Brillouin microscopy Yun and Chernyak

1040-8738 Copyright � 2018 The Author(s). Published by Wolters Kluwer Health, Inc. www.co-ophthalmology.com 301



Diagnosis and screening for corneal diseases

Due to focal nature of keratoconus, identifying local
variations in elastic modulus may allow earlier
detection of the disease before it manifests itself
morphologically. Early clinical data show statisti-
cally significant differences between Brillouin meas-
urements in the cone region versus in other corneal
loci [28]. Distinct biomechanical features that dif-
ferentiate keratoconus from normal corneas have
been identified, and they may serve as diagnostic
metrics for keratoconus detection in clinical practice
[25

&&

]. There are three clinical findings. First, the
average Brillouin frequency of keratoconus eyes is
significantly lower when compared to the normal
population, and the difference increases with the
severity of the disease; second, the reduction of
Brillouin frequency is most pronounced in the cone
region, whereas the surrounding corneal tissue have
normal Brillouin frequencies (Fig. 3a); and third,
mild keratoconus is most clearly distinguished by
comparing the difference of Brillouin frequency

between the left and right eyes (Fig. 3b). These
results suggest that the biomechanical tissue prop-
erties are altered in keratoconic cones, and that the
biomechanical bilateral asymmetry may serve as a
diagnostic metric for detecting early-stage keratoco-
nus and possibly identifying progressive keratoco-
nus for early interventions. This expectation is
supported by clinical experience that in many ker-
atoconus patients, the severity of the disease is
asymmetric [29].

Fuchs’ dystrophy is associated the loss of endo-
thelial cell function in water transport. The corneal
thickness recovery in response to induced hydration
control has been suggested as a test of endothelial
function [30,31]. Brillouin microscopy may be used
to measure abnormal hydration changes in patients
with Fuchs’ dystrophy and help monitor the pro-
gression of the disease.

Refractive procedure evaluation

Corneal screening has been a standard procedure for
evaluating the eligibility of candidates for refractive
surgery. Having detailed biomechanical informa-
tion about the stroma may improve this screening
process to decrease the risk of surgical complica-
tions. Postrefractive surgery measurements may also
provide useful information about each procedure
and compare residual biomechanical stability of
the eye between different surgical options, such as
LASIK, photorefractive keratectomy (PRK), or small
incision lenticule extraction procedure (SMILE) [32].
Such comparison has been limited to theoretical
models [33] or nonposition-specific evaluations
[34]. Having noninvasive, spatially-resolved bio-
mechanicalmapping can improvecurrentevaluation
methods.

Personalized treatment planning potential

Several theoretical models using finite element cor-
neal mesh have predicted differential responses of
‘weak’ and ‘strong’ corneas to the same refractive
procedure [35,36]. Peripheral disruption of collagen
fibers produces an in-axis flattening effect responsi-
ble for the refractive effects of astigmatic keratotomy
[37]. Ablation of tissue with LASIK or PRK procedure
alters the corneal shape beyond the actual material
that is removed from the stroma [38]. To properly
account for differential response of the cornea to the
refractive procedure, models must be loaded not just
with geometric and morphological stromal proper-
ties, but also with its local elastic properties [39–41].

By measuring longitudinal modulus and hydro-
static tissue properties, Brillouin microscopy may
enable clinicians to create patient-specific nomo-
grams for refractive procedures reducing outcome
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FIGURE 3. Brillouin measurement of keratoconus patients.
(a) Brillouin maps and corresponding pachymetry maps by
Pentacam (Oculus Gmbh) of patients diagnosed with mild
KC (stage 1; middle) and severe KC (right), in comparison
to a normal subject (left). (b) The difference in Brillouin
frequency between left and right eyes. The bilateral
asymmetry is significantly higher in early-stage keratoconus.
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variability and refractive outliers that may require
secondary procedures (re-treatments). It has been
shown that corneal hydration affects the excimer
laser ablation rate in LASIK surgeries [42,43]. Bio-
mechanical differences are thought to explain the
variability in refractive outcomes following cataract
and astigmatic keratotomy surgeries [44]. It may be
possible to individually tailor ablation parameters or
astigmatic keratotomy nomograms based on Bril-
louin measurements made prior to treatment.

Given the vastly different magnitudes and lack
of a priori correlation between longitudinal and
shear moduli, however, it is uncertain whether
and how Brillouin data can be integrated into finite
element modeling. Nevertheless, research effort is
warranted to incorporate Brillouin data into patient-
specific simulations of various refractive procedures
to increase confidence in outcomes for both the
patient and the surgeon.

Monitoring effectiveness of corneal
cross-linking procedures

Corneal cross-linking (CXL) is one of the effective
options to treat keratoconus and post-LASIK ectasia
[45] by reinforcing the collagen and proteoglycans
network in the corneal stroma. After ex-vivo studies
[46,47

&

,48], clinical Brillouin measurements of
patients were conducted to evaluate biomechanical
changes of corneal properties before and after CXL.
The first clinical study on CXL patients has begun in
collaboration with Dr Theo Seiler at IROC, Zurich,
Switzerland, using a rack-mounted Brillouin system.
Prior to the procedure, significant differences between
keratoconus patients and controls were observed in
the mean measurements of the Brillouin longitudinal
modulus. After the procedure, the longitudinal mod-
uli of the cross-linked corneas returned to the normal
range [25

&&

]. Furthermore, measurement of a cohort of
keratoconus patients who had received CXL at IROC
in the past 4 years revealed a trend of increasing
Brillouin frequencies after the treatment [49].

Measuring postoperative treatment penetration
depth is difficult and imprecise with existing meth-
ods such as slit-lamp exam [12] or OCT [50]. Brillouin
spectroscopy has the potential to more accurately
demarcate treated zones. Having detailed preopera-
tive assessment of corneal strength in keratoconus
patient may also lead to improved treatment designs
that are customized for a given individual [51,52] as
opposed to a generic cross-linking protocol.

Characterization of the crystalline lens

In addition to corneal imaging, Brillouin micros-
copy can be used to evaluate the crystalline lens
in vivo. Early studies have demonstrated feasibility of

theapproach in animal models [53,54]. Brillouindata
showed remarkable correlation to Young’s modulus
obtained by other conventional mechanical techni-
ques. Recently, human measurements have shown
positional changes in Brillouin elastic modulus that
are consistent with known lens anatomy (nucleus
and cortex) as well as age-related changes in the
central region of the lens associated with growth
[55]. Figure 4 shows typical axial Brillouin lens pro-
files for two subjects. Such data can prove useful in
characterizing the crystalline lens for age-related
presbyopia and optimization of surgical or pharma-
cological procedures to reduce its symptoms.

Characterization of the sclera

Brillouin spectroscopy measurements of sclera are
more challenging due to highly scattering properties
of this tissue. However, an optical method for
improving the resolution and signal for scleral meas-
urements was developed and tested ex vivo [56].
Using additional optical filtering allows for imaging
of sclera and conjunctiva of porcine eyes. Scleral
measurements may help with detecting and moni-
toring of myopia progression due to scleral weaken-
ing and pave the way to early prevention and
treatments such as scleral cross-linking [57].

CONCLUSION

Brillouin microscopy provides safe and noncontact
method for measuring longitudinal elastic modulus
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of ocular tissues. It provides three-dimensional
resolution of the imaged tissue revealing spatial
variations in mechanical properties. Its clinical use-
fulness has already been demonstrated in corneal
diagnostic and treatment monitoring and may
eventually be a valuable tool for surgical planning
of refractive and therapeutic procedures. Beyond
corneal applications, crystalline lens imaging may
help clinicians in assessing presbyopia and effective-
ness of various treatments for restoring its elasticity;
imaging of the sclera may determine predisposition
to progressive myopia in patients and allow for
earlier intervention before refractive error manifests
itself.
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